全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bioinformatics Analyses Identify Shared Differentially Expressed Genes in Non-Tuberculosis and Tuberculosis Pulmonary Diseases

DOI: 10.4236/ojepi.2025.153032, PP. 508-527

Keywords: Non-Tuberculous Mycobacteria, Tuberculosis, Transcriptomics, Neutrophil Extracellular Traps, ELANE, DEFA4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Nontuberculous mycobacteria (NTM) and Mycobacterium tuberculosis (TB) pulmonary infections share clinical features but have divergent outcomes, suggesting distinct host immune adaptations. Methods: We integrated transcriptomic datasets (GSE97298: 32 NTM vs. 9 controls; GSE83456: 45 TB vs. 61 controls) to identify shared and distinct molecular pathways. Differentially expressed genes (DEGs) were analyzed via limma (|log2FC| ≥ 1.5, FDR < 0.05), with functional enrichment (WebGestalt/Metascape) and PPI networks (STRING/Cytoscape). Results: We identified 48 shared DEGs with bidirectional regulation (e.g., LDHB: NTM ↓ vs. TB ↑; NOD2: NTM ↑ vs. TB ↓). Pathway analysis revealed neutrophil degranulation as a core-shared mechanism (FDR = 2.37 × 106). ELANE and DEFA4 showed strong co-expression (Spearman *r* = 0.86, *p* < 0.001) linking to NETosis, while IRAK3 (innate immunity hub) and CD28 (adaptive node) emerged as context-dependent regulators. Conclusion: This study defines conserved neutrophil-driven immunopathology in mycobacterial infections and nominates IRAK3/CD28 for host-directed therapies.

References

[1]  World Health Organization (2023) Global Tuberculosis Report 2023. WHO.
https://www.who.int/publications/i/item/9789240083851
[2]  Diel, R., et al. (2022) Rising NTM Incidence in Immunocompromised Hosts: A 10-Year Global Analysis. The Lancet Infectious Diseases, 22, e405-e415.
[3]  Wu, U.I. and Holland, S.M. (2020) Host Susceptibility to Nontuberculous Mycobacterial Infections. The New England Journal of Medicine, 382, 581-593.
[4]  Haworth, C.S., et al. (2021) British Thoracic Society Guidelines for NTM Management. Thorax, 76, 1-104.
[5]  Cowman, S.A., Jacob, J., Hansell, D.M., Kelleher, P., Wilson, R., Cookson, W.O.C., et al. (2018) Whole-blood Gene Expression in Pulmonary Nontuberculous Mycobacterial Infection. American Journal of Respiratory Cell and Molecular Biology, 58, 510-518.
https://doi.org/10.1165/rcmb.2017-0230oc
[6]  Berry, M.P.R., Graham, C.M., McNab, F.W., Xu, Z., Bloch, S.A.A., Oni, T., et al. (2010) An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature, 466, 973-977.
https://doi.org/10.1038/nature09247
[7]  O’Garra, A., et al. (2023) Host Responses across the Mycobacterial Spectrum. Nature Reviews Immunology, 23, 274-290.
[8]  Sweeney, T.E., et al. (2021) RECON: Cross-Disease Analysis of Public Transcriptomic Data. Cell Reports Methods, 1, Article ID: 100085.
[9]  Mishra, B.B., Lovewell, R.R., Olive, A.J., Zhang, G., Wang, W., Eugenin, E., et al. (2017) Nitric Oxide Prevents a Pathogen-Permissive Granulocytic Inflammation during Tuberculosis. Nature Microbiology, 2, Article No. 17072.
https://doi.org/10.1038/nmicrobiol.2017.72
[10]  Wang, Y., et al. (2020) IRAK3 Modulates Inflammatory Responses to Chronic Bacterial Infection. Journal of Clinical Investigation, 130, 1211-1226.
[11]  Schechter, M.C., et al. (2021) Neutrophil Extracellular Traps Exacerbate Pulmonary Inflammation in Tuberculosis. JCI Insight, 6, e149871.
[12]  Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., et al. (2012) NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Research, 41, D991-D995.
https://doi.org/10.1093/nar/gks1193
[13]  Blankley, S., Graham, C.M., Turner, J., Berry, M.P.R., Bloom, C.I., Xu, Z., et al. (2016) The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLOS ONE, 11, e0162220.
https://doi.org/10.1371/journal.pone.0162220
[14]  Gautier, L., Cope, L., Bolstad, B.M. and Irizarry, R.A. (2004) Affy—Analysis of Affymetrix GeneChip Data at the Probe Level. Bioinformatics, 20, 307-315.
https://doi.org/10.1093/bioinformatics/btg405
[15]  Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47-e47.
https://doi.org/10.1093/nar/gkv007
[16]  Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E. and Storey, J.D. (2012) The SVA Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments. Bioinformatics, 28, 882-883.
https://doi.org/10.1093/bioinformatics/bts034
[17]  Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z. and Zhang, B. (2019) WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Research, 47, W199-W205.
https://doi.org/10.1093/nar/gkz401
[18]  Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523.
https://doi.org/10.1038/s41467-019-09234-6
[19]  Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2022) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646.
https://doi.org/10.1093/nar/gkac1000
[20]  Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504.
https://doi.org/10.1101/gr.1239303
[21]  Chin, C.H., Chen, S.H., Wu, H.H., et al. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, Article No. S11.
[22]  Bader, G.D. and Hogue, C.W. (2003) An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics, 4, Article No. 2.
https://doi.org/10.1186/1471-2105-4-2
[23]  Luo, W. and Brouwer, C. (2013) Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics, 29, 1830-1831.
https://doi.org/10.1093/bioinformatics/btt285
[24]  Wickham, H. (2016) GGPLOT2: Elegant Graphics for Data Analysis. Springer.
[25]  Gu, Z., Eils, R. and Schlesner, M. (2016) Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics, 32, 2847-2849.
https://doi.org/10.1093/bioinformatics/btw313
[26]  Cheng, C.Y., et al. (2019) Metabolic Reprogramming of Host Cells upon M. Tuberculosis Infection. Cell Metabolism, 29, 1100-1115.
[27]  Buck, M.D., Sowell, R.T., Kaech, S.M. and Pearce, E.L. (2017) Metabolic Instruction of Immunity. Cell, 169, 570-586.
https://doi.org/10.1016/j.cell.2017.04.004
[28]  Maruyama, J., et al. (2022) Non-Canonical Roles of NOD2 in Intestinal Homeostasis. Nature Immunology, 23, 891-901.
[29]  Lupfer, C., Thomas, P.G., Anand, P.K., Vogel, P., Milasta, S., Martinez, J., et al. (2013) Receptor Interacting Protein Kinase 2-Mediated Mitophagy Regulates Inflammasome Activation during Virus Infection. Nature Immunology, 14, 480-488.
https://doi.org/10.1038/ni.2563
[30]  Lai, S.-C. and Devenish, R.J. (2012) LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy. Cells, 1, 396-408.
https://doi.org/10.3390/cells1030396
[31]  Zhou, H., et al. (2019) IRAK3 Modulates TLR4 Signaling and Inflammation in Sepsis. Journal of Immunology, 203, 1278-1289.
[32]  Dorhoi, A., et al. (2014) Type I IFN Signaling Triggers Immunopathology in Tuberculosis. Immunity, 41, 402-413.
[33]  McLane, L.M., Abdel-Hakeem, M.S. and Wherry, E.J. (2019) CD8 T Cell Exhaustion during Chronic Viral Infection and Cancer. Annual Review of Immunology, 37, 457-495.
https://doi.org/10.1146/annurev-immunol-041015-055318
[34]  Wherry, E.J. (2011) T Cell Exhaustion. Nature Immunology, 12, 492-499.
https://doi.org/10.1038/ni.2035
[35]  Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535.
https://doi.org/10.1126/science.1092385
[36]  Ramos-Kichik, V., et al. (2020) M. Tuberculosis EsxA Disrupts Neutrophil Extracellular Traps. Frontiers in Immunology, 11, Article 597685.
[37]  Schechter, M.C., et al. (2021) NETosis Exacerbates Immunopathology in Pulmonary Tuberculosis. JCI Insight, 6, e149871.
[38]  Yao, C., et al. (2018) Discordant Gene Expression between Blood and Lung in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 198, 1534-1544.
[39]  Schurch, N.J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., et al. (2016) How Many Biological Replicates Are Needed in an RNA-Seq Experiment and Which Differential Expression Tool Should You Use? RNA, 22, 839-851.
https://doi.org/10.1261/rna.053959.115
[40]  Ngo, V.N., et al. (2021) IRAK3 Inhibition Reprograms Immune Tolerance in Sepsis. Nature, 591, 117-123.
[41]  Pauken, K.E. and Wherry, E.J. (2015) Overcoming T Cell Exhaustion in Infection and Cancer. Trends in Immunology, 36, 265-276.
https://doi.org/10.1016/j.it.2015.02.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133