Background: Nontuberculous mycobacteria (NTM) and Mycobacterium tuberculosis (TB) pulmonary infections share clinical features but have divergent outcomes, suggesting distinct host immune adaptations. Methods: We integrated transcriptomic datasets (GSE97298: 32 NTM vs. 9 controls; GSE83456: 45 TB vs. 61 controls) to identify shared and distinct molecular pathways. Differentially expressed genes (DEGs) were analyzed via limma (|log2FC| ≥ 1.5, FDR < 0.05), with functional enrichment (WebGestalt/Metascape) and PPI networks (STRING/Cytoscape). Results: We identified 48 shared DEGs with bidirectional regulation (e.g., LDHB: NTM ↓ vs. TB ↑; NOD2: NTM ↑ vs. TB ↓). Pathway analysis revealed neutrophil degranulation as a core-shared mechanism (FDR = 2.37 × 10?6). ELANE and DEFA4 showed strong co-expression (Spearman *r* = 0.86, *p* < 0.001) linking to NETosis, while IRAK3 (innate immunity hub) and CD28 (adaptive node) emerged as context-dependent regulators. Conclusion: This study defines conserved neutrophil-driven immunopathology in mycobacterial infections and nominates IRAK3/CD28 for host-directed therapies.
References
[1]
World Health Organization (2023) Global Tuberculosis Report 2023. WHO. https://www.who.int/publications/i/item/9789240083851
[2]
Diel, R., et al. (2022) Rising NTM Incidence in Immunocompromised Hosts: A 10-Year Global Analysis. The Lancet Infectious Diseases, 22, e405-e415.
[3]
Wu, U.I. and Holland, S.M. (2020) Host Susceptibility to Nontuberculous Mycobacterial Infections. The New England Journal of Medicine, 382, 581-593.
[4]
Haworth, C.S., et al. (2021) British Thoracic Society Guidelines for NTM Management. Thorax, 76, 1-104.
[5]
Cowman, S.A., Jacob, J., Hansell, D.M., Kelleher, P., Wilson, R., Cookson, W.O.C., et al. (2018) Whole-blood Gene Expression in Pulmonary Nontuberculous Mycobacterial Infection. AmericanJournalofRespiratoryCellandMolecularBiology, 58, 510-518. https://doi.org/10.1165/rcmb.2017-0230oc
[6]
Berry, M.P.R., Graham, C.M., McNab, F.W., Xu, Z., Bloch, S.A.A., Oni, T., et al. (2010) An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature, 466, 973-977. https://doi.org/10.1038/nature09247
[7]
O’Garra, A., et al. (2023) Host Responses across the Mycobacterial Spectrum. Nature Reviews Immunology, 23, 274-290.
[8]
Sweeney, T.E., et al. (2021) RECON: Cross-Disease Analysis of Public Transcriptomic Data. Cell Reports Methods, 1, Article ID: 100085.
[9]
Mishra, B.B., Lovewell, R.R., Olive, A.J., Zhang, G., Wang, W., Eugenin, E., et al. (2017) Nitric Oxide Prevents a Pathogen-Permissive Granulocytic Inflammation during Tuberculosis. NatureMicrobiology, 2, Article No. 17072. https://doi.org/10.1038/nmicrobiol.2017.72
[10]
Wang, Y., et al. (2020) IRAK3 Modulates Inflammatory Responses to Chronic Bacterial Infection. Journal of Clinical Investigation, 130, 1211-1226.
[11]
Schechter, M.C., et al. (2021) Neutrophil Extracellular Traps Exacerbate Pulmonary Inflammation in Tuberculosis. JCI Insight, 6, e149871.
[12]
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., et al. (2012) NCBI GEO: Archive for Functional Genomics Data Sets—Update. NucleicAcidsResearch, 41, D991-D995. https://doi.org/10.1093/nar/gks1193
[13]
Blankley, S., Graham, C.M., Turner, J., Berry, M.P.R., Bloom, C.I., Xu, Z., et al. (2016) The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLOSONE, 11, e0162220. https://doi.org/10.1371/journal.pone.0162220
[14]
Gautier, L., Cope, L., Bolstad, B.M. and Irizarry, R.A. (2004) Affy—Analysis of AffymetrixGeneChip Data at the Probe Level. Bioinformatics, 20, 307-315. https://doi.org/10.1093/bioinformatics/btg405
[15]
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. NucleicAcidsResearch, 43, e47-e47. https://doi.org/10.1093/nar/gkv007
[16]
Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E. and Storey, J.D. (2012) The SVA Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments. Bioinformatics, 28, 882-883. https://doi.org/10.1093/bioinformatics/bts034
[17]
Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z. and Zhang, B. (2019) WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Research, 47, W199-W205. https://doi.org/10.1093/nar/gkz401
[18]
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. NatureCommunications, 10, Article No. 1523. https://doi.org/10.1038/s41467-019-09234-6
[19]
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2022) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. NucleicAcidsResearch, 51, D638-D646. https://doi.org/10.1093/nar/gkac1000
[20]
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. GenomeResearch, 13, 2498-2504. https://doi.org/10.1101/gr.1239303
[21]
Chin, C.H., Chen, S.H., Wu, H.H., et al. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, Article No. S11.
[22]
Bader, G.D. and Hogue, C.W. (2003) An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMCBioinformatics, 4, Article No. 2. https://doi.org/10.1186/1471-2105-4-2
[23]
Luo, W. and Brouwer, C. (2013) Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics, 29, 1830-1831. https://doi.org/10.1093/bioinformatics/btt285
[24]
Wickham, H. (2016) GGPLOT2: Elegant Graphics for Data Analysis. Springer.
[25]
Gu, Z., Eils, R. and Schlesner, M. (2016) Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics, 32, 2847-2849. https://doi.org/10.1093/bioinformatics/btw313
[26]
Cheng, C.Y., et al. (2019) Metabolic Reprogramming of Host Cells upon M. Tuberculosis Infection. Cell Metabolism, 29, 1100-1115.
[27]
Buck, M.D., Sowell, R.T., Kaech, S.M. and Pearce, E.L. (2017) Metabolic Instruction of Immunity. Cell, 169, 570-586. https://doi.org/10.1016/j.cell.2017.04.004
[28]
Maruyama, J., et al. (2022) Non-Canonical Roles of NOD2 in Intestinal Homeostasis. Nature Immunology, 23, 891-901.
Lai, S.-C. and Devenish, R.J. (2012) LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy. Cells, 1, 396-408. https://doi.org/10.3390/cells1030396
[31]
Zhou, H., et al. (2019) IRAK3 Modulates TLR4 Signaling and Inflammation in Sepsis. Journal of Immunology, 203, 1278-1289.
[32]
Dorhoi, A., et al. (2014) Type I IFN Signaling Triggers Immunopathology in Tuberculosis. Immunity, 41, 402-413.
[33]
McLane, L.M., Abdel-Hakeem, M.S. and Wherry, E.J. (2019) CD8 T Cell Exhaustion during Chronic Viral Infection and Cancer. AnnualReviewofImmunology, 37, 457-495. https://doi.org/10.1146/annurev-immunol-041015-055318
[34]
Wherry, E.J. (2011) T Cell Exhaustion. NatureImmunology, 12, 492-499. https://doi.org/10.1038/ni.2035
Ramos-Kichik, V., et al. (2020) M. Tuberculosis EsxA Disrupts Neutrophil Extracellular Traps. Frontiers in Immunology, 11, Article 597685.
[37]
Schechter, M.C., et al. (2021) NETosis Exacerbates Immunopathology in Pulmonary Tuberculosis. JCIInsight, 6, e149871.
[38]
Yao, C., et al. (2018) Discordant Gene Expression between Blood and Lung in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 198, 1534-1544.
[39]
Schurch, N.J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., et al. (2016) How Many Biological Replicates Are Needed in an RNA-Seq Experiment and Which Differential Expression Tool Should You Use? RNA, 22, 839-851. https://doi.org/10.1261/rna.053959.115
[40]
Ngo, V.N., et al. (2021) IRAK3 Inhibition Reprograms Immune Tolerance in Sepsis. Nature, 591, 117-123.
[41]
Pauken, K.E. and Wherry, E.J. (2015) Overcoming T Cell Exhaustion in Infection and Cancer. TrendsinImmunology, 36, 265-276. https://doi.org/10.1016/j.it.2015.02.008