全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Morpho-Cultural Characterization, Physicochemical Activities, and Effect of Abiotic Factors on the Growth of Rhizobium sp. Isolated from Nodules of 18 Soybean (Glycine max (L.) Merr.) Varieties Farmed in Cameroon

DOI: 10.4236/ojss.2025.156018, PP. 408-444

Keywords: Soybean, Nodules, Rhizobium sp., Adaptation, Abiotic Stress, Physicochemical Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acidic pH, high salinities, and extreme temperatures limit agricultural production in tropical soils, particularly in Cameroon. Rhizobia can improve crop growth and productivity in these soils, thanks to their ability to adapt to stressful conditions. In this study, nodules of 18 varieties of soybeans (Glycine max (L.) Merr.) were used to isolate rhizobia. The isolates were characterized and screened for their resistance to pH (2 to 6.8), salinity (NaCl 2% to 12%, w/v), and temperature (15?C to 45?C). Then, the physicochemical activity (catalase, proteins, total antioxidant capacity (TAC), ferrous reducing antioxidant power (FRAP), and malondialdehyde (MDA) of the isolates was assessed using referenced methods. The results showed that out of 108 isolates obtained, 73 were Rhizobium sp., endowed with variable pH, salinity, and temperature adaptabilities. The highest acid resistance (pH 2 to 4), salinity (4% to 12%), and extreme temperature (40?C to 45?C) were recorded with isolates 1M, 2M, 7M, and 5M. Isolate 10G2 showed the highest protein content (135.33 ± 5.65 μg/mL), while the isolates 1, 2G, 5P', and 13M scored the highest catalase activity (0.07 ± 0.00 μmol/mL/g prot). All the isolates demonstrated antioxidant activity, with the highest FRAP recorded by isolate 7M (298.46 ± 0.00 μg AAE/mL) and the highest TAC by isolate 4M1 (1335.93 ± 10.84 μg AAE/mL). They also presented the ability to inhibit oxidative stress through the inhibition of MDA production. The lowest MDA value (1.14 ± 0.05 μmol/L) was obtained with the isolate 11G3. Generally, the isolates with interesting adaptation to abiotic conditions and physicochemical activities were from soybean varieties TGX 2007-11 F, TGX 2001-12 F, TGX 1991-22 F, SC Sentinel, Panorama 3, Maksoy 2N, Panorama 237, and Panorama 2. These results highlight the potential of Rhizobium sp. isolated from soybean nodules in improving the crop productivity of tropical soils and suggest further characterization of these strains using genomic approaches.

References

[1]  Sanchez, P.A. and Logan, T.J. (2015) Myths and Science about the Chemistry and Fertility of Soils in the Tropics. In: Lal, R. and Sanchez, P.A., Eds., Myths and Science of Soils of the Tropics, Soil Science Society of America and American Society of Agronomy, 35-46.
https://doi.org/10.2136/sssaspecpub29.c3
[2]  Ambassa-Kiki, R., Yemefack, M. and Tchienkoua (2002) Caractéristique biophysique et aptitude à la production végétale, animale et piscicole. IRAD, 8-48.
[3]  Li, X., Zhang, X., Zhao, Q. and Liao, H. (2023) Genetic Improvement of Legume Roots for Adaption to Acid Soils. The Crop Journal, 11, 1022-1033.
https://doi.org/10.1016/j.cj.2023.04.002
[4]  Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., et al. (2021) Extent and Management of Acid Soils for Sustainable Crop Production System in the Tropical Agroecosystems: A Review. Acta Agriculturae Scandinavica, Section BSoil & Plant Science, 71, 852-869.
https://doi.org/10.1080/09064710.2021.1954239
[5]  Tiwari, P., Bose, S.K., Park, K., Dufossé, L. and Fouillaud, M. (2024) Plant-Microbe Interactions under the Extreme Habitats and Their Potential Applications. Microorganisms, 12, Article No. 448.
https://doi.org/10.3390/microorganisms12030448
[6]  Bandurska, H. (2022) Drought Stress Responses: Coping Strategy and Resistance. Plants, 11, Article No. 922.
https://doi.org/10.3390/plants11070922
[7]  Goyal, R.K., Mattoo, A.K. and Schmidt, M.A. (2021) Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops toward Agriculture Sustainability. Frontiers in Microbiology, 12, Article ID: 669404.
https://doi.org/10.3389/fmicb.2021.669404
[8]  Lagunas, B., Richards, L., Sergaki, C., Burgess, J., Pardal, A.J., Hussain, R.M.F., et al. (2023) Rhizobial Nitrogen Fixation Efficiency Shapes Endosphere Bacterial Communities and Medicago Truncatula Host Growth. Microbiome, 11, Article No. 146.
https://doi.org/10.1186/s40168-023-01592-0
[9]  Manet, L., Boyomo, O., Ngonkeu, E.L.M., Begoudé, A.D.B. and Sarr, P.S. (2016) Diversity and Dynamics of Rhizobial Populations in Acidic Soils with Aluminum and Manganese Toxicities in Forest Zones. International Journal of Agricultural Research, Innovation and Technology, 6, 12-23.
https://doi.org/10.3329/ijarit.v6i2.31700
[10]  Kasper, S., Christoffersen, B., Soti, P. and Racelis, A. (2019) Abiotic and Biotic Limitations to Nodulation by Leguminous Cover Crops in South Texas. Agriculture, 9, Article No. 209.
https://doi.org/10.3390/agriculture9100209
[11]  Abd-Alla, M.H., Al-Amri, S.M. and El-Enany, A.E. (2023) Enhancing Rhizobium-legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture, 13, Article No. 2092.
https://doi.org/10.3390/agriculture13112092
[12]  Mamenko, T.P. (2021) Regulation of Legume-Rhizobial Symbiosis: Molecular Genetic Aspects and Participation of Reactive Oxygen Species. Cytology and Genetics, 55, 447-459.
https://doi.org/10.3103/s0095452721050078
[13]  Ayala, A., Muñoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 6, 360-438.
https://doi.org/10.1155/2014/360438
[14]  Kots, S.Y., Mamenko, T.P. and Homenko, Y.A. (2019) The Content of Hydrogen Peroxide and Catalase Activity in Different on Effectiveness of Symbiotic Systems Glycine Max-Bradyrhizobium japonicum under Drought Conditions. Mikrobiolohichnyi Zhurnal, 81, 62-75.
https://doi.org/10.15407/microbiolj81.04.062
[15]  Melo, A.S.d., Melo, Y.L., Lacerda, C.F.d., Viégas, P.R.A., Ferraz, R.L.d.S. and Gheyi, H.R. (2022) Water Restriction in Cowpea Plants [Vigna unguiculata (L.) Walp.]: Metabolic Changes and Tolerance Induction. Revista Brasileira de Engenharia Agrícola e Ambiental, 26, 190-197.
https://doi.org/10.1590/1807-1929/agriambi.v26n3p190-197
[16]  Ben-Laouane, R., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait Rahou, Y., Raklami, A., et al. (2020) Green Compost Combined with Mycorrhizae and Rhizobia: A Strategy for Improving Alfalfa Growth and Yield under Field Conditions. Gesunde Pflanzen, 73, 193-207.
https://doi.org/10.1007/s10343-020-00537-z
[17]  Zhang, H., Prithiviraj, B., Charles, T.C., Driscoll, B.T. and Smith, D.L. (2003) Low Temperature Tolerant Bradyrhizobium japonicum Strains Allowing Improved Nodulation and Nitrogen Fixation of Soybean in a Short Season (Cool Spring) Area. European Journal of Agronomy, 19, 205-213.
https://doi.org/10.1016/s1161-0301(02)00038-2
[18]  Singh, A., Kumar, A., Yadav, S. and Singh, I.K. (2019) Reactive Oxygen Species-Mediated Signaling during Abiotic Stress. Plant Gene, 18, Article ID: 100173.
https://doi.org/10.1016/j.plgene.2019.100173
[19]  Hasanuzzaman, M., Bhuyan, M.H.M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., et al. (2020) Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9, Article No. 681.
https://doi.org/10.3390/antiox9080681
[20]  Li, Y., Pan, F. and Yao, H. (2018) Response of Symbiotic and Asymbiotic Nitrogen-Fixing Microorganisms to Nitrogen Fertilizer Application. Journal of Soils and Sediments, 19, 1948-1958.
https://doi.org/10.1007/s11368-018-2192-z
[21]  Granada Agudelo, M., Ruiz, B., Capela, D. and Remigi, P. (2023) The Role of Microbial Interactions on Rhizobial Fitness. Frontiers in Plant Science, 14, Article ID: 1277262.
https://doi.org/10.3389/fpls.2023.1277262
[22]  Nair, R.M., Boddepalli, V.N., Yan, M., Kumar, V., Gill, B., Pan, R.S., et al. (2023) Global Status of Vegetable Soybean. Plants, 12, Article No. 609.
https://doi.org/10.3390/plants12030609
[23]  Gaonkar, V. and Rosentrater, K.A. (2019) Soybean. In: Pan, Z.L., Zhang, R.H. and Zicari, S., Eds., Integrated Processing Technologies for Food and Agricultural By-Products, Elsevier, 73-104.
https://doi.org/10.1016/b978-0-12-814138-0.00004-6
[24]  Hartman, G.L., West, E.D. and Herman, T.K. (2011) Crops That Feed the World 2. Soybean—Worldwide Production, Use, and Constraints Caused by Pathogens and Pests. Food Security, 3, 5-17.
https://doi.org/10.1007/s12571-010-0108-x
[25]  Cacciari, I., Di Mattia, E., Quatrini, P., Moscatelli, M.C., Grego, S., Lippi, D. and De Paolis, M.R. (2015) Un arbre au désert: Réponses adaptatives des isolats de Rhizobium aux stress. IRD.
[26]  Ngo Nkot, L., Ngo Bisseck, M., Fankem, H., Adamou, S., Kamguia, K., Kamdem, N., Ngakou, A., Nwaga, D. and Etoa, F.X. (2015) Isolation and Screening of Indigenous Bambara Groundnut (Vigna subterranea) Nodulating Bacteria for Their Tolerance to Some Environmental Stresses. American Journal of Microbiological Research, 3, 65-75.
[27]  King, C.A. and Purcell, L.C. (2001) Soybean Nodule Size and Relationship to Nitrogen Fixation Response to Water Deficit. Crop Science, 41, 1099-1107.
https://doi.org/10.2135/cropsci2001.4141099x
[28]  Vincent, J.M. (1970) A Manual for Practical Study of Root Nodule Bacteria (IBP Handbook). Blackwell Scientific Publications.
[29]  Lowry, O., Rosebrough, N., Farr, A.L. and Randall, R. (1951) Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265-275.
https://doi.org/10.1016/s0021-9258(19)52451-6
[30]  Oyaizu, M. (1986) Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. The Japanese Journal of Nutrition and Dietetics, 44, 307-315.
https://doi.org/10.5264/eiyogakuzashi.44.307
[31]  Prieto, P., Pineda, M. and Aguilar, M. (1999) Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269, 337-341.
https://doi.org/10.1006/abio.1999.4019
[32]  Sinha, A.K. (1972) Colorimetric Assay of Catalase. Analytical Biochemistry, 47, 389-394.
https://doi.org/10.1016/0003-2697(72)90132-7
[33]  Wilbur, K.M., Bernheim, F. and Shapiro, O.W. (1949) The Thiobarbituric Acid Reagent as a Test for the Oxidation of Unsaturated Fatty Acids by Various Agents. Archives of Biochemistry, 24, 305-313.
[34]  Hungria, M. and Vargas, M.A.T. (2000) Environmental Factors Affecting N2 Fixation in Grain Legumes in the Tropics, with an Emphasis on Brazil. Field Crops Research, 65, 151-164.
https://doi.org/10.1016/s0378-4290(99)00084-2
[35]  Ferreira, T.C., Aguilar, J.V., Souza, L.A., Justino, G.C., Aguiar, L.F. and Camargos, L.S. (2016) pH Effects on Nodulation and Biological Nitrogen Fixation in Calopogonium mucunoides. Brazilian Journal of Botany, 39, 1015-1020.
https://doi.org/10.1007/s40415-016-0300-0
[36]  Ferguson, B., Lin, M. and Gresshoff, P.M. (2013) Regulation of Legume Nodulation by Acidic Growth Conditions. Plant Signaling & Behavior, 8, e23426.
https://doi.org/10.4161/psb.23426
[37]  Muglia, C.I., Grasso, D.H. and Aguilar, O.M. (2007) Rhizobium tropici Response to Acidity Involves Activation of Glutathione Synthesis. Microbiology, 153, 1286-1296.
https://doi.org/10.1099/mic.0.2006/003483-0
[38]  Nkot, L., Fankim, H., Etoa, F. and Nwaga, D. (2009) Tolérance à l\’acidité chez Vigna unguiculata en symbiose avec les rhizobia. Cameroon Journal of Experimental Biology, 4.
https://doi.org/10.4314/cajeb.v4i2.37982
[39]  Zhang, J., Wang, N., Li, S., Wang, J., Feng, Y., Wang, E., et al. (2023) The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. Plants, 12, Article No. 3421.
https://doi.org/10.3390/plants12193421
[40]  Zhang, H., Prithiviraj, B., Souleimanov, A., D’Aoust, F., Charles, T.C., Driscoll, B.T., et al. (2002) The Effect of Temperature and Genistein Concentration on Lipo-Chito-oligosaccharide (LCO) Production by Wild-Type and Mutant Strains of Bradyrhizobium japonicum. Soil Biology and Biochemistry, 34, 1175-1180.
https://doi.org/10.1016/s0038-0717(02)00054-8
[41]  Yeremko, L., Czopek, K., Staniak, M., Marenych, M. and Hanhur, V. (2025) Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review. Biomolecules, 15, Article No. 118.
https://doi.org/10.3390/biom15010118
[42]  Aranjuelo, I., Arrese-Igor, C. and Molero, G. (2014) Nodule Performance within a Changing Environmental Context. Journal of Plant Physiology, 171, 1076-1090.
https://doi.org/10.1016/j.jplph.2014.04.002
[43]  Kunert, K.J., Vorster, B.J., Fenta, B.A., Kibido, T., Dionisio, G. and Foyer, C.H. (2016) Drought Stress Responses in Soybean Roots and Nodules. Frontiers in Plant Science, 7, Article No. 1015.
https://doi.org/10.3389/fpls.2016.01015
[44]  Alexandre, A. and Oliveira, S. (2012) Response to Temperature Stress in Rhizobia. Critical Reviews in Microbiology, 39, 219-228.
https://doi.org/10.3109/1040841x.2012.702097
[45]  Toniutti, M.A., Fornasero, L.V., Albicoro, F.J., Martini, M.C., Draghi, W., Alvarez, F., et al. (2017) Nitrogen-Fixing Rhizobial Strains Isolated from Desmodium incanum DC in Argentina: Phylogeny, Biodiversity and Symbiotic Ability. Systematic and Applied Microbiology, 40, 297-307.
https://doi.org/10.1016/j.syapm.2017.04.004
[46]  Zhang, Y., Ku, Y., Cheung, T., Cheng, S., Xin, D., Gombeau, K., et al. (2024) Challenges to Rhizobial Adaptability in a Changing Climate: Genetic Engineering Solutions for Stress Tolerance. Microbiological Research, 288, Article ID: 127886.
https://doi.org/10.1016/j.micres.2024.127886
[47]  Nakei, M.D., Venkataramana, P.B. and Ndakidemi, P.A. (2022) Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. Frontiers in Sustainable Food Systems, 6, Article ID: 824444.
https://doi.org/10.3389/fsufs.2022.824444
[48]  Ahmed, J., Qadir, G., Ali, M.F., Javed, T., Jhanzab, H.M., Wattoo, F.M., et al. (2023) Screening and Growth Assessment of Indigenous and Exotic Sesame Genotypes under Osmotic Stress. South African Journal of Botany, 158, 203-213.
https://doi.org/10.1016/j.sajb.2023.05.014
[49]  Bertrand, A., Gatzke, C., Bipfubusa, M., Lévesque, V., Chalifour, F.P., Claessens, A., et al. (2020) Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium. Agronomy, 10, Article No. 569.
https://doi.org/10.3390/agronomy10040569
[50]  Wekesa, C., Asudi, G.O., Okoth, P., Reichelt, M., Muoma, J.O., Furch, A.C.U., et al. (2022) Rhizobia Contribute to Salinity Tolerance in Common Beans (Phaseolus vulgaris L.) Cells, 11, Article No. 3628.
https://doi.org/10.3390/cells11223628
[51]  Mhadhbi, H., Chihaoui, S., Mhamdi, R., Mnasri, B., Jebara, M. and Mhamdi, R. (2011) A Highly Osmotolerant Rhizobial Strain Confers a Better Tolerance of Nitrogen Fixation and Enhances Protective Activities to Nodules of Phaseolus vulgaris under Drought Stress. African Journal of Biotechnology, 10, 4555-4563.
https://doi.org/10.5897/AJB10.1991.
[52]  del Cerro, P., Pérez-Montaño, F., Gil-Serrano, A., López-Baena, F.J., Megías, M., Hungria, M., et al. (2017) The Rhizobium tropici CIAT 899 NodD2 Protein Regulates the Production of Nod Factors under Salt Stress in a Flavonoid-Independent Manner. Scientific Reports, 7, Article No. 46712.
https://doi.org/10.1038/srep46712
[53]  Ayuso-Calles, M., Flores-Félix, J.D., Amaro, F., García-Estévez, I., Jiménez-Gómez, A., de Pinho, P.G., et al. (2023) Effect of Rhizobium Mechanisms in Improving Tolerance to Saline Stress in Lettuce Plants. Chemical and Biological Technologies in Agriculture, 10, Article No. 89.
https://doi.org/10.1186/s40538-023-00463-y
[54]  Khan, M.A., Asaf, S., Khan, A.L., Adhikari, A., Jan, R., Ali, S., et al. (2019) Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BioMed Research International, 2019, Article ID: 9530963.
https://doi.org/10.1155/2019/9530963
[55]  Shahid, M., Altaf, M. and Danish, M. (2024) The Halotolerant Exopolysaccharide-Producing Rhizobium Azibense Increases the Salt Tolerance Mechanism in Phaseolus vulgaris (L.) by Improving Growth, Ion Homeostasis, and Antioxidant Defensive Enzymes. Chemosphere, 360, Article ID: 142431.
https://doi.org/10.1016/j.chemosphere.2024.142431
[56]  Boominathan, R. and Doran, P.M. (2002) Ni-Induced Oxidative Stress in Roots of the Ni Hyperaccumulator, Alyssum bertolonii. New Phytologist, 156, 205-215.
https://doi.org/10.1046/j.1469-8137.2002.00506.x
[57]  Nandal, K., Sehrawat, A.R., Yadav, A.S., Vashishat, R.K. and Boora, K.S. (2005) High Temperature-Induced Changes in Exopolysaccharides, Lipopolysaccharides and Protein Profile of Heat-Resistant Mutants of Rhizobium Sp. (Cajanus). Microbiological Research, 160, 367-373.
https://doi.org/10.1016/j.micres.2005.02.011
[58]  Gomes, D.F., Batista, J.S.d.S., Schiavon, A.L., Andrade, D.S. and Hungria, M. (2012) Proteomic Profiling of Rhizobium tropici PRF 81: Identification of Conserved and Specific Responses to Heat Stress. BMC Microbiology, 12, Article No. 84.
https://doi.org/10.1186/1471-2180-12-84
[59]  Miller, G., Suzuki, N., Ciftci-Yilmaz, S. and Mittler, R. (2010) Reactive Oxygen Species Homeostasis and Signalling during Drought and Salinity Stresses. Plant, Cell & Environment, 33, 453-467.
https://doi.org/10.1111/j.1365-3040.2009.02041.x
[60]  Rout, J.R., Ram, S.S., Das, R., Chakraborty, A., Sudarshan, M. and Sahoo, S.L. (2013) Copper-Stress Induced Alterations in Protein Profile and Antioxidant Enzymes Activities in the in Vitro Grown Withania somnifera L. Physiology and Molecular Biology of Plants, 19, 353-361.
https://doi.org/10.1007/s12298-013-0167-5
[61]  del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M. and Barroso, J.B. (2006) Reactive Oxygen Species and Reactive Nitrogen Species in Peroxisomes. Production, Scavenging, and Role in Cell Signaling. Plant Physiology, 141, 330-335.
https://doi.org/10.1104/pp.106.078204
[62]  Zhang, X., Xu, Y. and Huang, B. (2018) Lipidomic Reprogramming Associated with Drought Stress Priming-Enhanced Heat Tolerance in Tall Fescue (Festuca arundinacea). Plant, Cell & Environment, 42, 947-958.
https://doi.org/10.1111/pce.13405
[63]  Sato, Y., Masuta, Y., Saito, K., Murayama, S. and Ozawa, K. (2011) Enhanced Chilling Tolerance at the Booting Stage in Rice by Transgenic Overexpression of the Ascorbate Peroxidase Gene, OsAPXa. Plant Cell Reports, 30, 399-406.
https://doi.org/10.1007/s00299-010-0985-7
[64]  Thounaojam, T.C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G.D., Sahoo, L., et al. (2012) Excess Copper Induced Oxidative Stress and Response of Antioxidants in Rice. Plant Physiology and Biochemistry, 53, 33-39.
https://doi.org/10.1016/j.plaphy.2012.01.006
[65]  Mutlu, S., Karadağoğlu, Ö., Atici, Ö. and Nalbantoğlu, B. (2013) Protective Role of Salicylic Acid Applied before Cold Stress on Antioxidative System and Protein Patterns in Barley Apoplast. Biologia plantarum, 57, 507-513.
https://doi.org/10.1007/s10535-013-0322-4
[66]  Jiao, Y., Bai, Z., Xu, J., Zhao, M., Khan, Y., Hu, Y., et al. (2018) Metabolomics and Its Physiological Regulation Process Reveal the Salt-Tolerant Mechanism in Glycine Soja Seedling Roots. Plant Physiology and Biochemistry, 126, 187-196.
https://doi.org/10.1016/j.plaphy.2018.03.002
[67]  Santos, A.d.A., Silveira, J.A.G.d., Bonifacio, A., Rodrigues, A.C. and Figueiredo, M.d.V.B. (2018) Antioxidant Response of Cowpea Co-Inoculated with Plant Growth-Promoting Bacteria under Salt Stress. Brazilian Journal of Microbiology, 49, 513-521.
https://doi.org/10.1016/j.bjm.2017.12.003
[68]  Manassila, M., Nuntagij, A., Tittabutr, P., Boonkerd, N. and Teaumroong, N. (2012) Growth, Symbiotic, and Proteomics Studies of Soybean Bradyrhizobium in Response to Adaptive Acid Tolerance. African Journal of Biotechnology, 11, 14899-14910.
https://doi.org/10.5897/AJB12.2340

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133