全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Infrared Backradiation under Low Humidity Conditions: An Evaluation of Greenhouse Gas Impact

DOI: 10.4236/acs.2025.153031, PP. 615-644

Keywords: Infrared Back Radiation, Desert Climate, Radiative Forcing, Energy Balance, Greenhouse Gases, Arid Regions, Humidity

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines the impact of greenhouse gases (GHG) on infrared back radiation (IRBR) in extreme desert and midlatitude winter conditions. Employing MODTRAN simulations, pyrgeometer measurements and energy balance fit models, we assess the impacts of CO2, Argon (Ar), N2O and R-134a. Results indicate that increasing CO2 concentrations yield a very limited additional IRBR effect, whereas R-134a exhibits significant radiative forcing even at trace levels. These findings highlight the critical role of synthetic GHGs in climate dynamics and provide insights into radiative forcing in arid regions, enhancing climate model accuracy for desert environments and contribute to the general assessment of the impact of increasing CO2 concentrations in our atmosphere. Likewise, these measurements have shown again that the contribution of CO2 to the total back radiation is largely saturated within the historical concentration boundaries far beyond current levels and back radiation by water vapor is the dominant effect.

References

[1]  Li, X., Xu, H. and Yang, K. (2013) The Impact of Infrared Back-Radiation on the Surface Energy Balance in Deserts. Geophysical Research Letters, 40, 2405-2410.
[2]  Boucher, O. and Reddy, M.S. (2008) Global Climate Change: Implications for the Energy Balance. Nature Geoscience, 1, 713-718.
[3]  Fisher, R.A. and Knutti, R. (2015) The Influence of Surface Properties and Radiative Fluxes on Climate Sensitivity. Nature Climate Change, 5, 3-6.
[4]  Ramanathan, V. and Feng, Y. (2009) Air Pollution, Climate Change, and Global Warming: Global and Regional Perspectives. Atmospheric Environment, 43, 37-41.
[5]  Charney, J.G. and Shukla, J. (1981) The Role of Desertification in the Global Climate System. Science, 213, 979-988.
https://doi.org/10.1126/science.213.4510.979
[6]  Stephens, G.L. (2005) Cloud Feedbacks in the Climate System: A Critical Review. Journal of Climate, 18, 237-273.
https://doi.org/10.1175/jcli-3243.1
[7]  Wielicki, B.A., Barkstrom, B.R., Harrison, E.F., Lee, R.B., Louis Smith, G. and Cooper, J.E. (1996) Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bulletin of the American Meteorological Society, 77, 853-868.
https://doi.org/10.1175/1520-0477(1996)077<0853:catere>2.0.co;2
[8]  Loeb, N.G., et al. (2009) Toward a More Accurate Description of Earth’s Energy Budget: The CERES Mission. Bulletin of the American Meteorological Society, 90, 611-624.
[9]  Loeb, N.G., Doelling, D.R., Wang, H., Su, W., Nguyen, C., Corbett, J.G., et al. (2018) Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. Journal of Climate, 31, 895-918.
https://doi.org/10.1175/jcli-d-17-0208.1
[10]  Salisbury, J.W. and D’Aria, D.M. (1992) Emissivity of Terrestrial Materials in the 8-14 μm Atmospheric Window. Remote Sensing of Environment, 42, 83-106.
https://doi.org/10.1016/0034-4257(92)90092-x
[11]  Hanel, R.A. and Conrath, B.J. (1970) Thermal Emission Spectra of the Earth and Atmosphere from the Nimbus 4 Michelson Interferometer Experiment. Nature, 228, 143-145.
https://doi.org/10.1038/228143a0
[12]  Zhou, L. (2016) Desert Amplification in a Warming Climate. Scientific Reports, 6, Article No. 31065.
https://doi.org/10.1038/srep31065
[13]  MODTRAN Infrared Light in the Atmosphere.
https://climatemodels.uchicago.edu/modtran/modtran.doc.html
[14]  Zhou, C. and Wang, K. (2016) Land Surface Temperature over Global Deserts: Means, Variability, and Trends. Journal of Geophysical Research: Atmospheres, 121, 14,344-14,357.
https://doi.org/10.1002/2016jd025410
[15]  Ogawa, K. and Schmugge, T. (2004) Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and MODIS Data. Earth Interactions, 8, 1-14.
https://doi.org/10.1175/1087-3562(2004)008<0001:msbeot>2.0.co;2
[16]  Halling, M. (2024) Greenhouse Energy Balance: A Numerical Approach to Analyze the Influence of Location, Season, and Structural Design of Greenhouses.
https://liu.diva-portal.org/smash/get/diva2:1885951/FULLTEXT01.pdf
[17]  Stoffel, T., et al. (2006) Pyrgeometer Calibrations for the Atmospheric Radiation Measurement Program: Updated Approach. Extended Abstracts, 16th ARM Science Team Meeting, Albuquerque, 27-31March 2006, 1-18.
[18]  Philipona, R., Dutton, E.G., Stoffel, T., Michalsky, J., Reda, I., Stifter, A., et al. (2001) Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky‐Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations. Journal of Geophysical Research: Atmospheres, 106, 28129-28141.
https://doi.org/10.1029/2000jd000196
[19]  Rogers, R.R. and Yau, M.K. (1989) A Short Course in Cloud Physics. 3rd Edition, Pergamon Press, 16.
[20]  Monatsübersicht Wetterstation BOKU-Met Februar 2025.
https://meteo.boku.ac.at/wetter/mon-archiv/2025/202502/202502.html
[21]  IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
https://doi.org/10.1017/9781009157896.001
[22]  Soden, B.J. and Held, I.M. (2006) An Assessment of Climate Feedbacks in Coupled Ocean-Atmosphere Models. Journal of Climate, 19, 3354-3360.
https://doi.org/10.1175/jcli3799.1
[23]  Pierrehumbert, R.T. (2010) Principles of Planetary Climate. Cambridge University Press.
https://doi.org/10.1017/cbo9780511780783
[24]  Hartmann, D.L. (1994) Global Physical Climatology. Academic Press.
[25]  Wallace, J.M. and Hobbs, P.V. (2006) Atmospheric Science: An Introductory Sur-vey. Academic Press.
[26]  Forster, P., et al. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 129-234.
[27]  Liou, K.N. (2002) An Introduction to Atmospheric Radiation. Vol. 84, Academic Press.
[28]  Myhre, G., et al. (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 659-740.
[29]  Petty, G.W. (2006) A First Course in Atmospheric Radiation. Sundog Publishing.
[30]  Hammel, E., Steiner, M., Marvan, C., Marvan, M., Retzlaff, K., Bergholz, W., et al. (2024) CO2 Back-Radiation Sensitivity Studies under Laboratory and Field Conditions. Atmospheric and Climate Sciences, 14, 407-428.
https://doi.org/10.4236/acs.2024.144025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133