全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evidence of Galaxy Expansion from Globular Clusters

DOI: 10.4236/ijaa.2025.152009, PP. 121-138

Keywords: Globular Clusters, Galactic Center, Galaxy Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

In modern astrophysics, it is believed that galaxies are not expanding. The authors of the article set out to investigate the motion of Globular Clusters (GC) of the Milky Way relative to the plane and center of the Galaxy. The study yielded the following results: 1. The average velocity of the GC relative to the Galactic plane for the northern region of the Galaxy has a positive value of approximately 30.36 ± 15.29 km/s (N = 42) for the range 0 ° <b< 13 ° . 2. For the southern region, the following result was obtained: the average velocity of GC movement relative to the plane in the southern direction is -17.83 ±13.54 km/s (N = 50) for the range 13 ° <b< 0 ° . 3. The average velocity of the GC relative to the Galactic center for the range 0 to 12 kpc is 31.70 ± 14.74 km/s (N = 119). Thus, we can state that the Galaxy is possibly expanding, at least in its central part. This seems unlikely as it does not agree with the current theory, so it can be considered a preliminary result requiring further study. However, if we accept the idea of the expansion of the Galaxy, we can answer a number of questions. In particular, we can explain the existence of massive galaxies discovered by the James Webb Space Telescope (JWST), whose age is estimated to be less than 1 billion years.

References

[1]  Martínez-Lombilla, C., Trujillo, I. and Knapen, J.H. (2019) Discovery of Disc Truncations above the Galaxies’ Mid-Plane in Milky Way-Like Galaxies. Monthly Notices of the Royal Astronomical Society, 483, 664-691.
https://doi.org/10.1093/mnras/sty2886

[2]  Chen, S., Richer, H., Caiazzo, I. and Heyl, J. (2018) Distances to the Globular Clusters 47 Tucanae and NGC 362 Using Gaia DR2 Parallaxes. The Astrophysical Journal, 867, Article 132.
https://doi.org/10.3847/1538-4357/aae089

[3]  Shao, Z. and Li, L. (2019) Gaia Parallax of Milky Way Globular Clusters—A Solution of Mixture Model. Monthly Notices of the Royal Astronomical Society, 489, 3093-3101.
https://doi.org/10.1093/mnras/stz2317

[4]  Forveille, T., Kotak, R., Shore, S. and Tolstoy, E. (2018) Gaia Data Release 2. Astronomy & Astrophysics, 616, E1.
https://doi.org/10.1051/0004-6361/201833955

[5]  Vasiliev, E. and Baumgardt, H. (2021) Gaia EDR3 View on Galactic Globular Clusters. Monthly Notices of the Royal Astronomical Society, 505, 5978-6002.
https://doi.org/10.1093/mnras/stab1475

[6]  Vasiliev, E. (2019) Proper Motions and Dynamics of the Milky Way Globular Cluster System from Gaia DR2. Monthly Notices of the Royal Astronomical Society, 484, 2832-2850.
https://doi.org/10.1093/mnras/stz171

[7]  Baumgardt, H. and Vasiliev, E. (2021) Accurate Distances to Galactic Globular Clusters through a Combination of Gaia EDR3, HST, and Literature Data. Monthly Notices of the Royal Astronomical Society, 505, 5957-5977.
https://doi.org/10.1093/mnras/stab1474

[8]  Kaluzny, J., Thompson, I.B., Rozyczka, M., Dotter, A., Krzeminski, W., Pych, W., et al. (2013) The Cluster Ages Experiment (Case). V. Analysis of Three Eclipsing Binaries in the Globular Cluster M4. The Astronomical Journal, 145, Article 43.
https://doi.org/10.1088/0004-6256/145/2/43

[9]  Thompson, I.B., Udalski, A., Dotter, A., Rozyczka, M., Schwarzenberg-Czerny, A., Pych, W., et al. (2020) The Cluster Ages Experiment (CASE)-VIII. Age and Distance of the Globular Cluster 47 Tuc from the Analysis of Two Detached Eclipsing Binaries. Monthly Notices of the Royal Astronomical Society, 492, 4254-4267.
https://doi.org/10.1093/mnras/staa032

[10]  Ferraro, F.R., Montegriffo, P., Origlia, L. and Fusi Pecci, F. (2000) A New Infrared Array Photometric Survey of Galactic Globular Clusters: A Detailed Study of the Red Giant Branch Sequence as a Step toward the Global Testing of Stellar Models. The Astronomical Journal, 119, 1282-1295.
https://doi.org/10.1086/301269

[11]  Dotter, A., Sarajedini, A., Anderson, J., Aparicio, A., Bedin, L.R., Chaboyer, B., et al. (2009) The Acs Survey of Galactic Globular Clusters. IX. Horizontal Branch Morphology and the Second Parameter Phenomenon. The Astrophysical Journal, 708, 698-716.
https://doi.org/10.1088/0004-637x/708/1/698

[12]  Gontcharov, G.A., Mosenkov, A.V. and Khovritchev, M.Y. (2018) Isochrone Fitting of Galactic Globular Clusters—I. NGC 5904. Monthly Notices of the Royal Astronomical Society, 483, 4949-4967.
https://doi.org/10.1093/mnras/sty3439

[13]  Valcin, D., Bernal, J.L., Jimenez, R., Verde, L. and Wandelt, B.D. (2020) Inferring the Age of the Universe with Globular Clusters. Journal of Cosmology and Astroparticle Physics, 12, Article 002.
https://doi.org/10.1088/1475-7516/2020/12/002

[14]  Bono, G., Caputo, F. and Di Criscienzo, M. (2007) RR Lyrae Stars in Galactic Globular Clusters. Astronomy & Astrophysics, 476, 779-790.
https://doi.org/10.1051/0004-6361:20078206

[15]  Hernitschek, N., Cohen, J.G., Rix, H., Magnier, E., Metcalfe, N., Wainscoat, R., et al. (2019) Precision Distances to Dwarf Galaxies and Globular Clusters from Pan-STARRS1 3π RR Lyrae. The Astrophysical Journal, 871, Article 49.
https://doi.org/10.3847/1538-4357/aaf388

[16]  Matsunaga, N., Fukushi, H., Nakada, Y., Tanabé, T., Feast, M.W., Menzies, J.W., et al. (2006) The Period-Luminosity Relation for Type II Cepheids in Globular Clusters. Monthly Notices of the Royal Astronomical Society, 370, 1979-1990.
https://doi.org/10.1111/j.1365-2966.2006.10620.x

[17]  Feast, M., Whitelock, P. and Menzies J. (2002) Globular Clusters and the Mira Period-Luminosity Relation. MNRAS, 370, 1979-1990.
[18]  Reid, I.N. and Gizis, J.E. (1998) The Distance to NGC 6397 by M-Subdwarf Main-Sequence Fitting. The Astronomical Journal, 116, 2929-2935.
https://doi.org/10.1086/300653

[19]  Cohen, R.E., Sarajedini, A., Kinemuchi, K. and Leiton, R. (2010) The Unusual Rr Lyrae Population of NGC 6101. The Astrophysical Journal, 727, Article 9.
https://doi.org/10.1088/0004-637x/727/1/9

[20]  McNamara, B.J., Harrison, T.E. and Baumgardt, H. (2004) The Dynamical Distance to M15: Estimates of the Cluster’s Age and Mass and of the Absolute Magnitude of Its RR Lyrae Stars. The Astrophysical Journal, 602, 264-270.
https://doi.org/10.1086/380905

[21]  van de Ven, G., van den Bosch, R.C.E., Verolme, E.K. and de Zeeuw, P.T. (2006) The Dynamical Distance and Intrinsic Structure of the Globular Cluster ω Centauri. Astronomy & Astrophysics, 445, 513-543.
https://doi.org/10.1051/0004-6361:20053061

[22]  Watkins, L.L., van der Marel, R.P., Bellini, A. and Anderson, J. (2015) Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. III. Dynamical Distances and Mass-to-Light Ratios. The Astrophysical Journal, 812, Article 149.
https://doi.org/10.1088/0004-637x/812/2/149

[23]  Hénault-Brunet, V., Gieles, M., Sollima, A., Watkins, L.L., Zocchi, A., Claydon, I., et al. (2019) Mass Modelling Globular Clusters in the Gaiaera: A Method Comparison Using Mock Data from an N-Body Simulation of M 4. Monthly Notices of the Royal Astronomical Society, 483, 1400-1425.
https://doi.org/10.1093/mnras/sty3187

[24]  Baumgardt, H. and Hilker, M. (2018) A Catalogue of Masses, Structural Parameters, and Velocity Dispersion Profiles of 112 Milky Way Globular Clusters. Monthly Notices of the Royal Astronomical Society, 478, 1520-1557.
https://doi.org/10.1093/mnras/sty1057

[25]  Baumgardt, H., Hilker, M., Sollima, A. and Bellini, A. (2018) Mean Proper Motions, Space Orbits, and Velocity Dispersion Profiles of Galactic Globular Clusters Derived from Gaia DR2 Data. Monthly Notices of the Royal Astronomical Society, 482, 5138-5155.
https://doi.org/10.1093/mnras/sty2997

[26]  Kamann, S., Husser, T.-O., Dreizler, S., Emsellem, E., Weilbacher, P.M., Martens, S., et al. (2017) A Stellar Census in Globular Clusters with MUSE: The Contribution of Rotation to Cluster Dynamics Studied with 200 000 Stars. Monthly Notices of the Royal Astronomical Society, 473, 5591-5616.
https://doi.org/10.1093/mnras/stx2719

[27]  Gordon, D., de Witt, A. and Jacobs, C.S. (2023) Position and Proper Motion of Sagittarius A* in the ICRF3 Frame from VLBI Absolute Astrometry. The Astronomical Journal, 165, Article 49.
https://doi.org/10.3847/1538-3881/aca65b

[28]  Reid, M.J. and Brunthaler, A. (2020) The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole. The Astrophysical Journal, 892, Article 39.
https://doi.org/10.3847/1538-4357/ab76cd

[29]  Xu, S., Zhang, B., Reid, M.J., Zheng, X., Wang, G. and Jung, T. (2022) A Milliarcsecond-Accurate Position for Sagittarius A*. The Astrophysical Journal, 940, Article 15.
https://doi.org/10.3847/1538-4357/ac98b9

[30]  Francis, C. and Anderson, E. (2009) Calculation of the Local Standard of Rest from 20574 Local Stars in the New Hipparcos Reduction with Known Radial Velocities. New Astronomy, 14, 615-629.
https://doi.org/10.1016/j.newast.2009.03.004

[31]  Dehnen, W. and Binney, J.J. (1998) Local Stellar Kinematics from Hipparcos Data. Monthly Notices of the Royal Astronomical Society, 298, 387-394.
https://doi.org/10.1046/j.1365-8711.1998.01600.x

[32]  Schönrich, R., Binney, J. and Dehnen, W. (2010) Local Kinematics and the Local Standard of Rest. Monthly Notices of the Royal Astronomical Society, 403, 1829-1833.
https://doi.org/10.1111/j.1365-2966.2010.16253.x

[33]  Xiao, M., Oesch, P.A., Elbaz, D., Bing, L., Nelson, E.J., Weibel, A., et al. (2024) Accelerated Formation of Ultra-Massive Galaxies in the First Billion Years. Nature, 635, 311-315.
https://doi.org/10.1038/s41586-024-08094-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133