|
基于松弛法的变压器绕组频响特性计算方法
|
Abstract:
变压器绕组变形故障的快速诊断对保障电力系统稳定运行至关重要。频率响应分析(Frequency Response Analysis, FRA)为故障检测提供了有效手段,因此建立等效电路并快速实现频率响应计算就成为研究的首要任务。本文针对高阶双绕组变压器等效电路,提出了一种基于松弛法的频率响应计算方法。首先,建立n阶双绕组变压器集总参数等效电路模型,明确其拓扑结构与参数分布;其次,在节点电压法的基础上,合理选取松弛因子与初始值,迭代求解节点电压,从而实现等效电路的频率响应计算;最后,基于Multisim平台构建仿真模型,对比所提算法与Multisim仿真、传统方法的偏差。结果表明曲线最大偏差低于0.25 dB,验证了算法的准确性。此外,为进一步验证算法在复杂网络中的适用性,本研究在高阶等效电路中进行了仿真,频率响应计算结果表明,松弛法与稀疏矩阵法、撕裂算法及节点电压法的结果具有高度一致性。
The rapid diagnosis of transformer winding deformation faults is crucial for ensuring the stable operation of power systems. Frequency Response Analysis (FRA) provides an effective means for fault detection. Thus, establishing equivalent circuits and rapidly computing frequency responses have become critical research priorities. In this paper, a frequency response computation method rooted in the relaxation method is proposed for the equivalent circuit of high-order two-winding transformers. First, an n-order dual-winding transformer lumped-parameter equivalent circuit model is established, clarifying its topological structure and parameter distribution. Second, the node voltage equations derived from the node voltage method are iteratively solved using the relaxation method, with optimized strategies for selecting the relaxation factor and initial values. Finally, a simulation model is constructed on the Multisim platform to compare the deviations between the proposed algorithm, Multisim simulations, and traditional methods. The results demonstrate a maximum deviation of less than 0.25 dB in the frequency response curves, validating the algorithm’s accuracy. Furthermore, to verify the algorithm’s applicability in complex networks, simulations are conducted on high-order equivalent circuits. The frequency response calculations reveal high consistency between the relaxation method and results from the sparse matrix method, tearing algorithm, and node voltage method, confirming the method’s robustness in intricate scenarios.
[1] | 孙鹏. 基于多传感信息融合的电力变压器绕组故障诊断方法[J]. 电工技术, 2024(4): 99-101. |
[2] | 张寿岩, 史卫刚, 杨利国, 等. 改进BiLSTM在电力变压器故障诊断中的应用研究[J]. 电测与仪表, 2024, 61(5): 160-165. |
[3] | 包金山, 杨定坤, 张靖, 等. 基于特征提取与INGO-SVM的变压器故障诊断方法[J]. 电力系统保护与控制, 2024, 52(7): 24-32. |
[4] | Wang, G., Qiu, S., Xie, F., Luo, T., Song, Y. and Wang, S. (2024) Diagnosing Fault Types and Degrees of Transformer Winding Combining FRA Method with SOA-Kelm. IEEE Access, 12, 50287-50299. https://doi.org/10.1109/access.2024.3385229 |
[5] | 黄凤洁. 变压器绕组故障模拟及故障诊断技术[J]. 电气技术与经济, 2023(10): 184-185, 191. |
[6] | 时东伟, 王志鑫, 毛庆波, 等. 500 kV母线电磁干扰下变压器绕组变形频率响应分析法的研究[J]. 变压器, 2020, 57(8): 49-51. |
[7] | 王松, 王薇, 曾鑫海, 等. 双绕组变压器集总等效电路频率响应的电路矩阵算法研究[J]. 西安交通大学学报, 2022, 56(8): 113-121. |
[8] | Wang, S., Yuan, Z. and Wang, S. (2021) The Comparison of Nodal Voltage Matrix and State Space Methods for Calculating the FRA Curve of the Transformer Winding. 2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO), Beijing, 15-17 October 2021, 1-4. https://doi.org/10.1109/AEERO52475.2021.9708319 |
[9] | 杨丰野, 王松, 陈冲, 等. 基于撕裂法的变压器绕组集总参数等效电路频率响应计算方法[J]. 电气技术, 2023, 24(7): 26-33. |
[10] | 王薇, 王松, 曾鑫海, 等. 变压器绕组梯形等效电路频率响应的稀疏列表算法研究[J]. 智慧电力, 2023, 51(7): 102-107. |
[11] | 王薇, 王松, 曾鑫海, 等. 基于混合分析法的变压器集总参数等效电路频率响应计算研究[J]. 大电机技术, 2023(3): 58-65. |
[12] | 任富强, 汲胜昌, 祝令瑜, 等. 双绕组电力变压器梯形网络频率响应的矩阵算法[J]. 西安交通大学学报, 2018, 52(2): 89-95. |
[13] | 李雪涛, 罗向东. 基于松弛法的TIADC综合误差的自适应估计与校准[J].电子器件, 2023, 46(5): 1174-1179. |
[14] | Ito, R., Fujie, T., Suyama, K. and Hirabayashi, R. (2002) New Design Methods of FIR Filters with Signed Power of Two Coefficients Based on a New Linear Programming Relaxation with Triangle Inequalities. 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353), Phoenix-Scottsdale, 26-29 May 2002, 1. https://doi.org/10.1109/ISCAS.2002.1009965 |
[15] | 程少庚, 崔杜武, 刘小河. 电网络分析[M]. 北京: 机械工业出版社, 1993. |
[16] | 陈希有. 电路理论教程[M]. 第2版. 北京: 高等教育出版社, 2020. |
[17] | 刘水霞, 陈国庆. 求解互补约束优化问题的乘子松弛法[J]. 运筹学学报, 2014, 18(4): 119-130. |