|
耐碳青霉烯类铜绿假单胞菌的新型噬菌体vB_Pae_HLL23的鉴定
|
Abstract:
铜绿假单胞菌是临床常见的机会致病菌。近年来,噬菌体治疗已成为对抗铜绿假单胞菌感染的一种有希望的策略,特别是在抗生素过度使用导致耐药性增加的情况下。本研究从医院污水中分离出一种新型噬菌体vB_Pae_HLL23,对耐碳青霉烯假单胞菌(Pseudomonas aeruginosa, CRPA)具有显著的裂解作用。透射电镜显示,vB_Pae_HLL23属于肌病毒科。生物学特性表明,HLL23噬菌体潜伏期为10 min,裂解周期为80 min,每个细胞爆发大小为195 PFU,对温度和pH变化的耐受性增强。我们的研究结果表明,HLL23生物学特性稳定,对耐碳青霉烯类铜绿假单胞菌具有杀伤能力,具有制备成耐药性铜绿假单胞菌的抗菌剂的潜力。
Pseudomonas aeruginosa is a common clinical opportunistic pathogen. In recent years, phage therapy has emerged as a promising strategy against P. aeruginosa infections, especially in the context of increased resistance due to antibiotic overuse. In this study, a novel phage, vB_Pae_HLL23, was isolated from hospital wastewater and showed significant lysis against carbapenem-resistant Pseudomonas aeruginosa (CRPA). Transmission electron microscopy showed that vB_Pae_HLL23 belongs to the Myoviridae family. Biological characterization showed that the HLL23 phage had a latency of 10 min, a lysis cycle of 80 min, a burst size of 195 PFU per cell, and enhanced tolerance to temperature and pH changes. Our results suggest that HLL23 has stable biological properties and killing ability against carbapenem-resistant Pseudomonas aeruginosa, and has the potential to be prepared as an antimicrobial agent for drug-resistant Pseudomonas aeruginosa.
[1] | Monson, R., Foulds, I., Foweraker, J., Welch, M. and Salmond, G.P.C. (2011) The Pseudomonas aeruginosa Generalized Transducing Phage phiPA3 Is a New Member of the phiKZ-Like Group of “Jumbo” Phages, and Infects Model Laboratory Strains and Clinical Isolates from Cystic Fibrosis Patients. Microbiology, 157, 859-867. https://doi.org/10.1099/mic.0.044701-0 |
[2] | Pang, Z., Raudonis, R., Glick, B.R., Lin, T. and Cheng, Z. (2019) Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnology Advances, 37, 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013 |
[3] | Parkins, M.D., Somayaji, R. and Waters, V.J. (2018) Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clinical Microbiology Reviews, 31. https://doi.org/10.1128/cmr.00019-18 |
[4] | Shortridge, D., Gales, A.C., Streit, J.M., Huband, M.D., Tsakris, A. and Jones, R.N. (2019) Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa over 20 Years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infectious Diseases, 6, S63-S68. https://doi.org/10.1093/ofid/ofy343 |
[5] | Breidenstein, E.B.M., de la Fuente-Núñez, C. and Hancock, R.E.W. (2011) Pseudomonas aeruginosa: All Roads Lead to Resistance. Trends in Microbiology, 19, 419-426. https://doi.org/10.1016/j.tim.2011.04.005 |
[6] | Mulcahy, L.R., Burns, J.L., Lory, S. and Lewis, K. (2010) Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis. Journal of Bacteriology, 192, 6191-6199. https://doi.org/10.1128/jb.01651-09 |
[7] | Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018) Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases, 18, 318-327. https://doi.org/10.1016/s1473-3099(17)30753-3 |
[8] | Torres-Castillo, L.C., Fandiño, C., Ramos, M., Ramos-Castaneda, J.A., Rioseco, M.L. and Juliet, C. (2023) In Vitro Activity of Ceftazidime-Avibactam against Gram-Negative Strains in Chile 2015-2021. Journal of Global Antimicrobial Resistance, 35, 143-148. https://doi.org/10.1016/j.jgar.2023.09.004 |
[9] | Zhang, H., Xu, Y., Jia, P., Zhu, Y., Zhang, G., Zhang, J., et al. (2020) Global Trends of Antimicrobial Susceptibility to Ceftaroline and Ceftazidime-Avibactam: A Surveillance Study from the ATLAS Program (2012-2016). Antimicrobial Resistance & Infection Control, 9, Article No. 166. https://doi.org/10.1186/s13756-020-00829-z |
[10] | Sarker, S.A., Berger, B., Deng, Y., Kieser, S., Foata, F., Moine, D., et al. (2016) Oral Application of Escherichia coli Bacteriophage: Safety Tests in Healthy and Diarrheal Children from Bangladesh. Environmental Microbiology, 19, 237-250. https://doi.org/10.1111/1462-2920.13574 |
[11] | Haddad, L.E., Harb, C.P., Gebara, M.A., et al. (2019) A Systematic and Critical Review of Bacteriophage Therapy against Multi-Drug Resistant ESKAPE Organisms in Humans. Clinical Infectious Diseases, 69, 167-178. |
[12] | Amarillas, L., Rubí-Rangel, L., Chaidez, C., González-Robles, A., Lightbourn-Rojas, L. and León-Félix, J. (2017) Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli. Frontiers in Microbiology, 8, Article No. 1355. https://doi.org/10.3389/fmicb.2017.01355 |
[13] | Lee, H., Ku, H., Lee, D., Kim, Y., Shin, H., Ryu, S., et al. (2016) Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food. PLOS ONE, 11, e0168985. https://doi.org/10.1371/journal.pone.0168985 |
[14] | Uchiyama, J., Rashel, M., Takemura, I., Kato, S., Ujihara, T., Muraoka, A., et al. (2012) Genetic Characterization of Pseudomonas aeruginosa Bacteriophage Kpp10. Archives of Virology, 157, 733-738. https://doi.org/10.1007/s00705-011-1210-x |
[15] | Morozova, V., Kozlova, Y., Tikunov, A., Babkin, I., Ushakova, T., Bardasheva, A., et al. (2023) Identification, Characterization, and Genome Analysis of Two Novel Temperate Pseudomonas Protegens Phages Pseup_222 and Pseup_224. Microorganisms, 11, Article No. 1456. https://doi.org/10.3390/microorganisms11061456 |
[16] | Jäckel, C., Hammerl, J.A. and Hertwig, S. (2019) Campylobacter Phage Isolation and Characterization: What We Have Learned So Far. Methods and Protocols, 2, Article No. 18. https://doi.org/10.3390/mps2010018 |
[17] | Manohar, P., Tamhankar, A.J., Lundborg, C.S. and Ramesh, N. (2018) Isolation, Characterization and in Vivo Efficacy of Escherichia Phage myPSH1131. PLOS ONE, 13, e0206278. https://doi.org/10.1371/journal.pone.0206278 |
[18] | Zerbini, F.M., Siddell, S.G., Lefkowitz, E.J., Mushegian, A.R., Adriaenssens, E.M., AlfenasZerbini, P., et al. (2023) Changes to Virus Taxonomy and the ICTV Statutes Ratified by the International Committee on Taxonomy of Viruses (2023). Archives of Virology, 168, Article No. 175. https://doi.org/10.1007/s00705-023-05797-4 |
[19] | Nagel, T., Musila, L., Muthoni, M., Nikolich, M., Nakavuma, J.L. and Clokie, M.R. (2022) Phage Banks as Potential Tools to Rapidly and Cost-Effectively Manage Antimicrobial Resistance in the Developing World. Current Opinion in Virology, 53, Article ID: 101208. https://doi.org/10.1016/j.coviro.2022.101208 |
[20] | Johnson, G., Banerjee, S. and Putonti, C. (2022) Diversity of Pseudomonas aeruginosa Temperate Phages. mSphere, 7, e01015-21. https://doi.org/10.1128/msphere.01015-21 |
[21] | Endersen, L., O’Mahony, J., Hill, C., Ross, R.P., McAuliffe, O. and Coffey, A. (2014) Phage Therapy in the Food Industry. Annual Review of Food Science and Technology, 5, 327-349. https://doi.org/10.1146/annurev-food-030713-092415 |
[22] | Cahill, J. and Young, R. (2019) Phage Lysis: Multiple Genes for Multiple Barriers. In: Advances in Virus Research, Elsevier, 33-70. https://doi.org/10.1016/bs.aivir.2018.09.003 |