|
离散时间阶段结构种群模型持久性的临界域大小
|
Abstract:
种群持续生存所需的临界域大小是生态学中的一个重要问题,它与生境的大小和配置密切相关。考虑到自然界中大多数物种表现出高度结构化的生命周期,我们在n维空间的有界域Ω中分析了一个由脉冲反应扩散方程控制的离散时间阶段结构种群模型。域Ω的外部被认为是不利的,但不能完全阻止种群扩散。因此,我们采用Robin边界条件来描述边界上的种群动态,并提供了n维超立方体和带半径的球体形状的域的临界结果。具体来说,我们利用主特征值理论和上下解的方法证明了当种群所居住的栖息地大小小于栖息地的临界域大小时,种群将会灭绝。反之,当生境空间范围大于临界域大小时,种群可以持续生存。
The critical domain size required for population persistence is a significant problem in ecology, which is closely associated with habitat size and configuration. Given that most species in nature exhibit highly structured life cycles, we analyze a discrete-time stage-structured population model governed by an impulsive reaction-diffusion equation within a bounded domain Ω in an n-dimensional space. The exterior of the domain Ω is considered unfavorable but does not completely prevent population dispersal. We thus employ Robin boundary conditions to describe population dynamics at the boundary and provide critical results for domains shaped as n-dimensional hypercube and sphere with radius R. Specifically, we employ principal eigenvalue theory and the method of upper and lower solutions to demonstrate that when the habitat size where the population resides is smaller than the critical domain size of the habitat, the population will become extinct. Conversely, when the spatial extent of habitat is larger than the critical domain size, the population can persist and survive.
[1] | MacDonald, J.S., Lutscher, F. and Bourgault, Y. (2024) Climate Change Fluctuations Can Increase Population Abundance and Range Size. Ecology Letters, 27, e14453. https://doi.org/10.1111/ele.14453 |
[2] | Leroux, S.J., Larrivée, M., Boucher-Lalonde, V., Hurford, A., Zuloaga, J., Kerr, J.T., et al. (2013) Mechanistic Models for the Spatial Spread of Species under Climate Change. Ecological Applications, 23, 815-828. https://doi.org/10.1890/12-1407.1 |
[3] | Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. and Ackerly, D.D. (2009) The Velocity of Climate Change. Nature, 462, 1052-1055. https://doi.org/10.1038/nature08649 |
[4] | Cantrell, R.S. and Cosner, C. (2004) Spatial Ecology via Reaction‐Diffusion Equations. Wiley. https://doi.org/10.1002/0470871296 |
[5] | Wang, M., Zhang, Y. and Huang, Q. (2022) A Stage-Structured Continuous-/Discrete-Time Population Model: Persistence and Spatial Spread. Bulletin of Mathematical Biology, 84, Article No. 135. https://doi.org/10.1007/s11538-022-01090-8 |
[6] | Harris, D.C., He, C., Preul, M.C., Kostelich, E.J. and Kuang, Y. (2023) Critical Patch Size of a Two-Population Reaction Diffusion Model Describing Brain Tumor Growth. SIAM Journal on Applied Mathematics, 84, S249-S268. https://doi.org/10.1137/22m1509631 |
[7] | Vasilyeva, O., Lutscher, F. and Lewis, M. (2015) Analysis of Spread and Persistence for Stream Insects with Winged Adult Stages. Journal of Mathematical Biology, 72, 851-875. https://doi.org/10.1007/s00285-015-0932-x |
[8] | Xu, H., Lin, Z. and Zhu, H. (2024) On an Age-Structured Juvenile-Adult Model with Harvesting Pulse in Moving and Heterogeneous Environment. Journal of Differential Equations, 405, 36-75. https://doi.org/10.1016/j.jde.2024.05.045 |
[9] | Wang, Z., Salmaniw, Y. and Wang, H. (2021) Persistence and Propagation of a Discrete-Time Map and PDE Hybrid Model with Strong Allee Effect. Nonlinear Analysis: Real World Applications, 61, Article ID: 103336. https://doi.org/10.1016/j.nonrwa.2021.103336 |
[10] | Wang, Z., An, Q. and Wang, H. (2023) Properties of Traveling Waves in an Impulsive Reaction-Diffusion Model with Overcompensation. Zeitschrift für angewandte Mathematik und Physik, 74, Article No. 114. https://doi.org/10.1007/s00033-023-02004-x |
[11] | Xu, H., Lin, Z. and Santos, C.A. (2023) Spatial Dynamics of a Juvenile-Adult Model with Impulsive Harvesting and Evolving Domain. Communications in Nonlinear Science and Numerical Simulation, 122, Article ID: 107262. https://doi.org/10.1016/j.cnsns.2023.107262 |
[12] | Bai, Z., Lou, Y. and Zhao, X. (2022) Spatial Dynamics of Species with Annually Synchronized Emergence of Adults. Journal of Nonlinear Science, 32, Article No. 78. https://doi.org/10.1007/s00332-022-09836-3 |
[13] | Wu, R. and Zhao, X. (2019) Spatial Invasion of a Birth Pulse Population with Nonlocal Dispersal. SIAM Journal on Applied Mathematics, 79, 1075-1097. https://doi.org/10.1137/18m1209805 |
[14] | Lin, Y. and Wang, Q. (2015) Spreading Speed and Traveling Wave Solutions in Impulsive Reaction-Diffusion Models. Communications in Nonlinear Science and Numerical Simulation, 23, 185-191. https://doi.org/10.1016/j.cnsns.2014.11.006 |
[15] | Li, Z. and Zhao, X. (2024) A Time-Space Periodic Population Growth Model with Impulsive Birth. Zeitschrift für angewandte Mathematik und Physik, 75, Article No. 83. https://doi.org/10.1007/s00033-024-02222-x |
[16] | Lewis, M.A. and Li, B. (2012) Spreading Speed, Traveling Waves, and Minimal Domain Size in Impulsive Reaction–diffusion Models. Bulletin of Mathematical Biology, 74, 2383-2402. https://doi.org/10.1007/s11538-012-9757-6 |
[17] | Fazly, M. (2021) Critical Domain Sizes of a Discrete-Map Hybrid and Reaction-Diffusion Model on Hostile Exterior Domains. IMA Journal of Applied Mathematics, 86, 739-760. https://doi.org/10.1093/imamat/hxab019 |
[18] | Fazly, M., Lewis, M. and Wang, H. (2017) On Impulsive Reaction-Diffusion Models in Higher Dimensions. SIAM Journal on Applied Mathematics, 77, 224-246. https://doi.org/10.1137/15m1046666 |
[19] | Fazly, M., Lewis, M. and Wang, H. (2020) Analysis of Propagation for Impulsive Reaction-Diffusion Models. SIAM Journal on Applied Mathematics, 80, 521-542. https://doi.org/10.1137/19m1246481 |
[20] | Li, B., Zhang, M. and Coffman, B. (2020) Can a Barrier Zone Stop Invasion of a Population? Journal of Mathematical Biology, 81, 1193-1216. https://doi.org/10.1007/s00285-020-01541-7 |
[21] | Jin, Y. and Lewis, M.A. (2011) Seasonal Influences on Population Spread and Persistence in Streams: Critical Domain Size. SIAM Journal on Applied Mathematics, 71, 1241-1262. https://doi.org/10.1137/100788033 |
[22] | Reimer, J.R., Bonsall, M.B. and Maini, P.K. (2016) The Critical Domain Size of Stochastic Population Models. Journal of Mathematical Biology, 74, 755-782. https://doi.org/10.1007/s00285-016-1021-5 |
[23] | Huang, Q., Wang, H. and Lewis, M.A. (2017) A Hybrid Continuous/Discrete-Time Model for Invasion Dynamics of Zebra Mussels in Rivers. SIAM Journal on Applied Mathematics, 77, 854-880. https://doi.org/10.1137/16m1057826 |
[24] | Lewis, M.A., Li, B. and Weinberger, H.F. (2002) Spreading Speed and Linear Determinacy for Two-Species Competition Models. Journal of Mathematical Biology, 45, 219-233. https://doi.org/10.1007/s002850200144 |
[25] | Weinberger, H.F., Lewis, M.A. and Li, B. (2002) Analysis of Linear Determinacy for Spread in Cooperative Models. Journal of Mathematical Biology, 45, 183-218. https://doi.org/10.1007/s002850200145 |
[26] | Cantrell, R.S. and Cosner, C. (1999) Diffusion Models for Population Dynamics Incorporating Individual Behavior at Boundaries: Applications to Refuge Design. Theoretical Population Biology, 55, 189-207. https://doi.org/10.1006/tpbi.1998.1397 |