全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2025 

基于栈式自编码深度学习的电池健康状态估计
Battery Health State Estimation Based on Stacked Autoencoder Deep Learning

DOI: 10.12677/sg.2025.153006, PP. 57-63

Keywords: 电池健康状态估计,栈式自编码器,注意力机制,剩余寿命预测,电池退化特征提取
Battery Health State Estimation
, Stacked Autoencoder, Attention Mechanism, Remaining Useful Life, Battery Degradation Feature Extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着新能源和储能技术的快速发展,智能电池能量管理系统(BEMS)在电力系统中的应用变得日益重要。然而,现有的电池管理方法大多基于固定规则,缺乏在复杂和动态环境中的灵活响应能力,这限制了电池状态估计和剩余寿命预测的准确性。本文提出了一种基于栈式自编码器(SAE)和通道注意力机制(SENet)的电池健康状态估计方法。通过分析电池的充放电数据,提取关键健康因子,并利用SAE深度学习模型进行特征融合。结合SENet模块自适应调整特征的权重,从而提升模型的预测能力和精度。与传统的基于主成分分析(PCA)和非线性神经网络的方法相比,该方法在提取电池退化特征方面更加高效,并在容量估计和剩余寿命预测中实现了更高的精度和稳定性。此外,该方法具有良好的实时性和鲁棒性,能够有效应对复杂环境的变化。
With the rapid development of renewable energy and energy storage technologies, smart Battery Energy Management Systems (BEMS) have become increasingly critical in power systems. However, most existing battery management methods rely on fixed rules, lacking flexible responsiveness in complex and dynamic environments, which limits the accuracy of battery state estimation and remaining useful life prediction. This paper proposes a State of Health (SOH) estimation method for batteries based on a Stacked Autoencoder (SAE) and a channel attention mechanism (SENet). By analyzing battery charge/discharge data, key health indicators are extracted, and a SAE-based deep learning model is employed for feature fusion. Combined with the SENet module, the proposed method adaptively adjusts feature weights to enhance prediction capability and accuracy. Compared with traditional approaches such as Principal Component Analysis (PCA) and nonlinear neural networks, this method demonstrates higher efficiency in extracting battery degradation features and achieves superior precision and stability in capacity estimation and remaining useful life prediction. Additionally, the proposed framework exhibits excellent real-time performance and robustness, enabling effective adaptation to environmental variations in complex scenarios.

References

[1]  刘俊, 高也, 齐宇蓉, 等. 基于马尔科夫链的可再生能源电力超额消纳量预测研究[J]. 自动化技术与应用, 2025, 44(4): 164-168.
[2]  王辰, 汤奕, 郑晨一. 基于动态优化周期的风光氢储耦合系统改进能量管理策略[J]. 电力系统自动化, 2025, 49(2): 142-153.
[3]  王欣, 郑赟, 秦斌. 考虑电池SOC一致性的城轨交通MHESS功率分配策略[J]. 现代电子技术, 2024, 47(22): 99-106.
[4]  勇兰. 用于预测电池寿命的新型深度学习模型[J]. 科学, 2024, 76(5): 38.
[5]  张迪俊. 基于PSO-RBFNN的电动汽车锂电池SOC预测[J]. 汽车维修, 2024(1): 10-14.
[6]  于秋月, 刘江岩, 何林, 等. 基于机器学习的锂离子电池荷电状态多步预测[J]. 汽车工程学报, 2023, 13(4): 586-596.
[7]  寇发荣, 罗希, 门浩, 等. 基于特征优选与改进极限学习机的锂电池SOC估计[J]. 储能科学与技术, 2023, 12(4): 1234-1243.
[8]  池贝贝. 基于DEKF联合CNN-LSTM-Attention的锂电池SOC估计[J]. 软件, 2024, 45(7): 134-137.
[9]  刘阳阳. 基于优化LSTM新能源汽车SOC估算的研究[J]. 汽车维修技师, 2024(20): 31-32.
[10]  范元亮, 吴涵, 黄兴华, 等. 基于松弛特性和主成分分析的锂离子电池荷电状态估计[J]. 电气工程学报, 2024, 19(4): 337-346.
[11]  黄旭, 许冬云. 基于MF-SAE-SSA-KELM油浸式变压器故障诊断方法[J]. 工业控制计算机, 2024, 37(10): 126-128.
[12]  
https://github.com/standing-o/SoH_estimation_of_Lithium-ion_battery

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133