|
炎症指标在脑卒中诊疗中的关键作用及研究新进展
|
Abstract:
脑卒中作为一种急性脑血管疾病,严重威胁着人类的健康。近年来炎症在其发生、发展和预后中的关键作用备受关注。本文深入探讨了脑卒中与炎症指标的关系,整合多维度炎症机制,缺血性脑卒中发生后,小胶质细胞活化、补体系统激活、中性粒细胞浸润等引发炎症级联反应。经典炎症标志物如C反应蛋白(CRP)、白细胞介素-6 (IL-6)、肿瘤坏死因子α (TNF-α)等与卒中复发风险、预后分层及剂量效应关系密切;新兴炎症标志物脂蛋白相关磷脂酶A2 (Lp-PLA2)、末端补体复合物(TCC)、巨噬细胞炎症蛋白-1α (MIP-1α)等在评估斑块稳定性、预测认知功能障碍等方面具有重要价值。炎症指标在脑卒中急性期可用于早期预警,在慢性期与神经退行性变相关。在治疗上,依达拉奉右莰醇的自由基–炎症双重阻断、他汀类药物的多效性抗炎机制发挥重要作用,NLRP3炎症小体抑制剂和调节性T细胞疗法展现出良好前景。然而,炎症指标标准化检测存在障碍,个体化炎症治疗方案的探索面临挑战。未来,多组学技术有望为揭示炎症机制提供更深入的理论基础,推动脑卒中精准防治。
Stroke is an acute cerebrovascular disease. Stroke, as an acute cerebrovascular disease, is a serious threat to human health. The key role of inflammation in its occurrence, development and prognosis has attracted much attention in recent years. In this paper, the relationship between stroke and inflammatory markers is explored in depth, integrating multidimensional inflammatory mechanisms. After the occurrence of ischemic stroke, microglia activation, complement system activation, and neutrophil infiltration trigger an inflammatory cascade response. Classical inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) are closely related to stroke recurrence risk, prognostic stratification, and dose effect, while emerging inflammatory markers such as lipoprotein-associated phospholipase A2 (Lp-PLA2), terminal complement complex (TCC), and macrophage inflammatory protein-1alpha (MIP-1alpha) have been shown to be useful in assessing plaque stability and predicting cognitive function. They are valuable in assessing plaque stability and predicting cognitive dysfunction. Inflammatory indicators can be used for early warning in the acute phase of stroke and are associated with neurodegeneration in the chronic phase. Therapeutically, the dual free radical-inflammatory blockade of edaravone dextran and the pleiotropic anti-inflammatory mechanism of statins play important roles, and NLRP3 inflammatory vesicle inhibitors and regulatory T-cell therapies show good promise. However, there are obstacles to standardized testing of inflammatory indicators and challenges to the exploration of individualized inflammatory treatment protocols. In the future, multi-omics technology is expected to provide a more in-depth theoretical basis for revealing the inflammatory mechanisms and promoting the precise prevention and treatment of stroke.
[1] | Feigin, V.L., Brainin, M., Norrving, B., et al. (2025) World Stroke Organization: Global Stroke Fact Sheet 2025. International Journal of Stroke, 20, 132-144. https://doi.org/10.1177/17474930241308142 |
[2] | 《中国脑卒中防治报告2021》概要[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/trialRead.html?dbCode=CJFD&tableName=CJFDTOTAL&fileName=NXGB202311009&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=C2dwXrVTdrMt4n4pqANP07jDgAJm0DcSjfagl0ofpMBnuWkwZW1IrnPlvMl6kUI1gNtXeRGnTk8e6OQu9fo2sYwTRimScePfUfRrtl6KRaurs8ji84Z+Vcu/Zk7AGTRJG56GTyGOVQpgXeWHqSVlCWNdeSevPWlxSwx5tkMUvHA=, 2025-04-24. |
[3] | Sadik, N.A., Rashed, L.A. and Abd-El Mawla, M.A. (2021) Circulating MiR-155 and JAK2/STAT3 Axis in Acute Ischemic Stroke Patients and Its Relation to Post-Ischemic Inflammation and Associated Ischemic Stroke Risk Factors. International Journal of General Medicine, 14, 1469-1484. https://pmc.ncbi.nlm.nih.gov/articles/PMC8071708/ |
[4] | Alsbrook, D.L., Napoli, M.D., Bhatia, K., Biller, J., Andalib, S., Hinduja, A., et al. (2023) Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Current Neurology and Neuroscience Reports, 23, 407-431 https://pmc.ncbi.nlm.nih.gov/articles/PMC10544736/ |
[5] | van der Spuy, W.J. and Pretorius, E. (2012) Interrelation between Inflammation, Thrombosis, and Neuroprotection in Cerebral Ischemia. Reviews in the Neurosciences, 23, 269-278. https://pubmed.ncbi.nlm.nih.gov/22752784/ |
[6] | Han, H.S. and Yenari, M.A. (2003) Cellular Targets of Brain Inflammation in Stroke. Current Opinion in Investigational Drugs, 4, 522-529. https://pubmed.ncbi.nlm.nih.gov/12833644/ |
[7] | Cao, X., Zhu, Q., Xia, X., Yao, B., Liang, S., Chen, Z. and Wu, M. (2020) The Correlation between Novel Peripheral Blood Cell Ratios and 90-Day Mortality in Patients with Acute Ischemic Stroke. PLOS ONE, 15, e0238312. https://pubmed.ncbi.nlm.nih.gov/32857820/ |
[8] | Di Napoli, M., Papa, F. and Bocola, V. (2001) Prognostic Influence of Increased C-Reactive Protein and Fibrinogen Levels in Ischemic Stroke. Stroke, 32, 133-138. https://pubmed.ncbi.nlm.nih.gov/11136928/ |
[9] | de Liyis, B.G., Ardhaputra, G.Y.B., Liyis, S., Wihandani, D.M., Siahaan, Y.M.T. and Pinatih, K.J.P. (2024) High C-Reactive Protein/Albumin Ratio Predicts Mortality and Hemorrhage in Stroke Patients Undergoing Mechanical Thrombectomy: A Systematic Review and Meta-Analysis-ScienceDirect. World Neurosurgery, 188, 211-219.e1. https://www.sciencedirect.com/science/article/abs/pii/S1878875024009021?via%3Dihub |
[10] | Davalos, D., Grutzendler, J., Yang, G., Kim, J.V., Zuo, Y., Jung, S., Littman, D.R., Dustin, M.L. and Gan, W.B. (2005) ATP Mediates Rapid Microglial Response to Local Brain Injury in Vivo. Nature Neuroscience, 8, 752-758. https://pubmed.ncbi.nlm.nih.gov/15895084/ |
[11] | Block, M.L., Zecca, L. and Hong, J.S. (2007) Microglia-Mediated Neurotoxicity: Uncovering the Molecular Mechanisms. Nature Reviews Neuroscience, 8, 57-69. https://pubmed.ncbi.nlm.nih.gov/17180163/ |
[12] | Rawish, E., Sauter, M., Sauter, R., Nording, H. and Langer, H.F. (2021) Complement, Inflammation and Thrombosis. British Journal of Pharmacology, 178, 2892-2904. https://pubmed.ncbi.nlm.nih.gov/33817781/ |
[13] | Yang, P., Zhu, Z., Zang, Y., Bu, X., Xu, T., Zhong, C., Wang, A., Peng, H., Guo, D., Zheng, X., Xu, T., Chen, J., Zhang, Y. and He, J. (2021) Increased Serum Complement C3 Levels Are Associated With Adverse Clinical Outcomes After Ischemic Stroke. Stroke, 52, 868-877. https://pubmed.ncbi.nlm.nih.gov/33517703/ |
[14] | Jacob, A., Hack, B., Chen, P., Quigg, R.J. and Alexander, J.J. (2011) C5a/CD88 Signaling Alters Blood-Brain Barrier Integrity in Lupus Through Nuclear Factor-κB. Journal of Neurochemistry, 119, 1041-1051. https://pubmed.ncbi.nlm.nih.gov/21929539/ |
[15] | Shavit-Stein, E., Berkowitz, S., Gofrit, S.G., Altman, K., Weinberg, N. and Maggio, N. (2022) Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Seminars in Thrombosis and Hemostasis, 48, 277-287. https://pubmed.ncbi.nlm.nih.gov/35052009/ |
[16] | Bushi, D., Chapman, J., Katzav, A., Shavit-Stein, E., Molshatzki, N., Maggio, N. and Tanne, D. (2013) Quantitative Detection of Thrombin Activity in an Ischemic Stroke Model. Journal of Molecular Neuroscience, 51, 844-850. https://pubmed.ncbi.nlm.nih.gov/23900720/ |
[17] | Phillipson, M. and Kubes, P. (2011) The Neutrophil in Vascular Inflammation. Nature Medicine, 17, 1381-1390. https://pubmed.ncbi.nlm.nih.gov/22064428/ |
[18] | Gelderblom, M., Weymar, A., Bernreuther, C., Velden, J., Arunachalam, P., Steinbach, K., Orthey, E., Arumugam, T.V., Leypoldt, F., Simova, O., Thom, V., Friese, M.A., Prinz, I., Hölscher, C., Glatzel, M., Korn, T., Gerloff, C., Tolosa, E. and Magnus, T. (2012) Neutralization of the IL-17 Axis Diminishes Neutrophil Invasion and Protects from Ischemic Stroke. Blood, 120, 3793-3802. https://pubmed.ncbi.nlm.nih.gov/22976954/ |
[19] | Hong, Z., Xu, H., Ni, K., Yang, Y. and Deng, S. (2024) Effect of Cyclosporin H on Ischemic Injury and Neutrophil Infiltration in Cerebral Infarct Model of Rats via PET Imaging. Annals of Nuclear Medicine, 38, 337-349. https://pubmed.ncbi.nlm.nih.gov/38360964/ |
[20] | Li, X., Song, S., Jia, W., Shi, Z., Xie, L., Fan, M. and Li, C. (2025) Do CRP Gene Variants and Smoking Elevate Recurrent Stroke Risk in Minor Ischemic Stroke Patients? European Journal of Medical Research, 30, Article 179. https://pmc.ncbi.nlm.nih.gov/articles/PMC11916976/ |
[21] | McCabe, J.J., Walsh, C., Gorey, S., et al. (2023) C-Reactive Protein, Interleukin-6, and Vascular Recurrence after Stroke: An Individual Participant Data Meta-Analysis. Stroke, 54, 1289-1299. https://pubmed.ncbi.nlm.nih.gov/37026458/ |
[22] | Shaafi, S., Sharifipour, E., Rahmanifar, R., Hejazi, S., Andalib, S., Nikanfar, M., Baradarn, B. and Mehdizadeh, R. (2014) Interleukin-6, a Reliable Prognostic Factor for Ischemic Stroke. Iranian Journal of Neurology, 13, 70-76. https://pubmed.ncbi.nlm.nih.gov/25295149/ |
[23] | Liu, T., Clark, R.K., McDonnell, P.C., Young, P.R., White, R.F., Barone, F.C. and Feuerstein, G.Z. (1994) Tumor Necrosis Factor-Alpha Expression in Ischemic Neurons. Stroke, 25, 1481-1488. https://pubmed.ncbi.nlm.nih.gov/8023366/ |
[24] | Zaremba, J. and Losy, J. (2001) Early TNF-Alpha Levels Correlate with Ischaemic Stroke Severity. Acta Neurologica Scandinavica, 104, 288-295. https://pubmed.ncbi.nlm.nih.gov/11696023/ |
[25] | Clausen, B.H., Degn, M., Martin, N.A., et al. (2014) Systemically Administered Anti-TNF Therapy Ameliorates Functional Outcomes after Focal Cerebral Ischemia. Journal of Neuroinflammation, 11, Article 203. https://pubmed.ncbi.nlm.nih.gov/25498129/ |
[26] | Macphee, C.H., Nelson, J. and Zalewski, A. (2006) Role of Lipoprotein-Associated Phospholipase A2 in Atherosclerosis and Its Potential as a Therapeutic Target. Current Opinion in Pharmacology, 6, 154-161. https://pubmed.ncbi.nlm.nih.gov/16495153/ |
[27] | Yang, F., Ma, L., Zhang, L., et al. (2019) Association between Serum Lipoprotein-Associated Phospholipase A2, Ischemic Modified Albumin and Acute Coronary Syndrome: A Cross-Sectional Study. Heart Vessels, 34, 1608-1614. https://pubmed.ncbi.nlm.nih.gov/30963302/ |
[28] | Bian, L., Mao, L.G., Sun, Y., et al. (2019) Serum Lipoprotein-Associated Phospholipase A2 as a Promising Prognostic Biomarker in Association with 90-Day Outcome of Acute Intracerebral Hemorrhage. Clinica Chimica Acta, 495, 429-435. https://pubmed.ncbi.nlm.nih.gov/31103624/ |
[29] | Oei, H.S., van der Meer, I.M., Hofman, A., Koudstaal, P.J., Stijnen, T., Breteler, M.M.B., et al. (2005) Lipoprotein-associated Phospholipase A2 Activity Is Associated with Risk of Coronary Heart Disease and Ischemic Stroke. Circulation, 111, 570-575. https://doi.org/10.1161/01.cir.0000154553.12214.cd https://pubmed.ncbi.nlm.nih.gov/15699277/ |
[30] | Xu, Y., Xu, Y., Li, Y., Liu, R., Wu, A., Zhou, R. and Mao, D. (2024) Analysis of the Relationship Between the Changes of Serum SAA, LP-PLA2, sCD40L and Carotid Atherosclerosis Plaque in Patients with Acute Cerebral Infarction. Alternative Therapies in Health and Medicine, 30, 47-53. https://pubmed.ncbi.nlm.nih.gov/38330557/ |
[31] | Aam, S., Gynnild, M.N., Munthe-Kaas, R., Saltvedt, I., Lydersen, S., Knapskog, A., et al. (2021) The Impact of Vascular Risk Factors on Post-Stroke Cognitive Impairment: The Nor-Coast Study. Frontiers in Neurology, 12, Article 678794. https://doi.org/10.3389/fneur.2021.678794 https://pubmed.ncbi.nlm.nih.gov/34421786/ |
[32] | Clarke, A.R., Christophe, B.R., Khahera, A., Sim, J.L. and Connolly, E.S. (2019) Therapeutic Modulation of the Complement Cascade in Stroke. Frontiers in Immunology, 10, Article 1723. https://doi.org/10.3389/fimmu.2019.01723 https://pubmed.ncbi.nlm.nih.gov/31417544/ |
[33] | Wang, Y., Li, J., Pan, Y., Wang, M., Lin, J., Meng, X., et al. (2022) Interleukin-6 as Predictor of One-Year Cognitive Function after Ischemic Stroke or TIA. Neuropsychiatric Disease and Treatment, 18, 391-399. https://doi.org/10.2147/ndt.s348409 https://pubmed.ncbi.nlm.nih.gov/35237035/ |
[34] | Charo, I.F. and Ransohoff, R.M. (2006) The Many Roles of Chemokines and Chemokine Receptors in Inflammation. New England Journal of Medicine, 354, 610-621. https://doi.org/10.1056/nejmra052723 https://pubmed.ncbi.nlm.nih.gov/16467548/ |
[35] | Minami, M. and Satoh, M. (2003) Chemokines and Their Receptors in the Brain: Pathophysiological Roles in Ischemic Brain Injury. Life Sciences, 74, 321-327. https://doi.org/10.1016/j.lfs.2003.09.019 https://pubmed.ncbi.nlm.nih.gov/14607260/ |
[36] | Basic Kes, V., Simundic, A., Nikolac, N., Topic, E. and Demarin, V. (2008) Pro-Inflammatory and Anti-Inflammatory Cytokines in Acute Ischemic Stroke and Their Relation to Early Neurological Deficit and Stroke Outcome. Clinical Biochemistry, 41, 1330-1334. https://doi.org/10.1016/j.clinbiochem.2008.08.080 https://pubmed.ncbi.nlm.nih.gov/18801351/ |
[37] | Băcilă, C., Vlădoiu, M., Văleanu, M., Moga, D. and Pumnea, P. (2025) The Role of IL-6 and TNF-Alpha Biomarkers in Predicting Disability Outcomes in Acute Ischemic Stroke Patients. Life, 15, Article 47. https://doi.org/10.3390/life15010047 https://pmc.ncbi.nlm.nih.gov/articles/PMC11766476/ |
[38] | Yu, H., Huang, Y., Chen, X., Nie, W., Wang, Y., Jiao, Y., et al. (2017) High-Sensitivity C-Reactive Protein in Stroke Patients—The Importance in Consideration of Influence of Multiple Factors in the Predictability for Disease Severity and Death. Journal of Clinical Neuroscience, 36, 12-19. https://doi.org/10.1016/j.jocn.2016.10.020 https://pubmed.ncbi.nlm.nih.gov/27825611/ |
[39] | Cheng, X., Wang, D., Zhang, Q., Wang, J., Li, B., Zhang, X., et al. (2023) Predictive Role of Pre-Thrombolytic Hs-CRP on the Safety and Efficacy of Intravenous Thrombolysis in Acute Ischemic Stroke. BMC Neurology, 23, Article No. 244. https://doi.org/10.1186/s12883-023-03291-7 https://pubmed.ncbi.nlm.nih.gov/37353783/ |
[40] | Sandvig, H.V., Aam, S., Alme, K.N., Askim, T., Beyer, M.K., Ellekjær, H., et al. (2023) Plasma Inflammatory Biomarkers Are Associated with Poststroke Cognitive Impairment: The Nor-COAST Study. Stroke, 54, 1303-1311. https://doi.org/10.1161/strokeaha.122.041965 https://pmc.ncbi.nlm.nih.gov/articles/PMC10121247/ |
[41] | 依达拉奉右莰醇联合丁苯酞氯化钠治疗急性脑梗死的系统评价[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/trialRead.html?dbCode=CJFD&tableName=CJFDTOTAL&fileName=YYPF202405019&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=s9xd2ExX+/ZvUDtY+uACkinbhDBUjkV5pWnUjolP9mI3Dy0B34apTizT7gKQuOvF1mjiAnayReHpsS33CPDNwvC5iDgEiQXz0bkTlf/kd50mlKmQjCghVLRXaADqZvRC9IXfS9arTpoURPnusSylVHAB2mOoY95+CRVzKqwyAk0=, 2025-04-26. |
[42] | Vdovychenko, Y.P., Loskutov, O.A., Halushko, O.A., Trishchynska, M.A., Dziuba, D.O., Povietkina, T.M., et al. (2021) Acute Ischemic Stroke in Women: Efficacy of the Free Radical Scavenger Edaravone. Wiadomości Lekarskie, 74, 72-76. https://doi.org/10.36740/wlek202101114 https://pubmed.ncbi.nlm.nih.gov/33851591/ |
[43] | Shen, G., Lou, C., Li, Q., Zhao, B., Luo, Y., Wu, F., et al. (2023) Edaravone Dexborneol Alleviates Cerebral Ischemia‐reperfusion Injury through Nf‐κB/NLRP3 Signal Pathway. The Anatomical Record, 307, 372-384. https://doi.org/10.1002/ar.25296 https://pubmed.ncbi.nlm.nih.gov/37475155/ |
[44] | 右旋龙脑的药理作用研究进展[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/trialRead.html?dbCode=CJFD&tableName=CJFDTOTAL&fileName=GWZW202107038&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=dHgCS2zLtpiaZ4XkVcnMEWWvZnvgddelPDjM9J/yf3LAMeq3APJkdPD4UcF+sRD7I/WQhIJwJ/ub1Brsp6bWRvFyrPK5VzGy1dnG65fPERod53CtJZg3/huAENxZ24+kXRTm0SykW8qT+AXxZC3keLqFq8o4kPleEgLA9SOiuB0=, 2025-04-27. |
[45] | Li, L., He, G., Shi, M., Zhu, J., Cheng, Y., Chen, Y., et al. (2023) Edaravone Dexborneol Ameliorates Cognitive Impairment by Regulating the NF-κB Pathway through AHR and Promoting Microglial Polarization Towards the M2 Phenotype in Mice with Bilateral Carotid Artery Stenosis (BCAS). European Journal of Pharmacology, 957, Article 176036. https://doi.org/10.1016/j.ejphar.2023.176036 https://pubmed.ncbi.nlm.nih.gov/37673366/ |
[46] | Xu, J., Wang, A., Meng, X., Yalkun, G., Xu, A., Gao, Z., et al. (2021) Edaravone Dexborneol versus Edaravone Alone for the Treatment of Acute Ischemic Stroke: A Phase III, Randomized, Double-Blind, Comparative Trial. Stroke, 52, 772-780. https://doi.org/10.1161/strokeaha.120.031197 https://pubmed.ncbi.nlm.nih.gov/33588596/ |
[47] | Davaro, F., Forde, S.D., Garfield, M., Jiang, Z., Halmen, K., Tamburro, N.D., et al. (2014) 3-Hydroxyl-3-Methylglutaryl Coenzyme a (HMG-CoA) Reductase Inhibitor (Statin)-Induced 28-kDa Interleukin-1β Interferes with Mature Il-1β Signaling. Journal of Biological Chemistry, 289, 16214-16222. https://doi.org/10.1074/jbc.m114.571505 https://www.sciencedirect.com/science/article/pii/S0021925820335134 |
[48] | Kuijk, L.M., Mandey, S.H., Schellens, I., Waterham, H.R., Rijkers, G.T., Coffer, P.J., et al. (2008) Statin Synergizes with LPS to Induce Il-1β Release by THP-1 Cells through Activation of Caspase-1. Molecular Immunology, 45, 2158-2165. https://doi.org/10.1016/j.molimm.2007.12.008 https://www.sciencedirect.com/science/article/abs/pii/S0161589007008917 |
[49] | Theofilis, P., Oikonomou, E., Tsioufis, K. and Tousoulis, D. (2023) The Role of Macrophages in Atherosclerosis: Pathophysiologic Mechanisms and Treatment Considerations. International Journal of Molecular Sciences, 24, Article 9568. https://doi.org/10.3390/ijms24119568 https://pubmed.ncbi.nlm.nih.gov/37298518/ |
[50] | Sadeghi, M., Khayati, S., Dehnavi, S., Almahmeed, W., Sukhorukovi, V.N. and Sahebkar, A. (2024) Regulatory Impact of Statins on Macrophage Polarization: Mechanistic and Therapeutic Implications. Journal of Pharmacy and Pharmacology, 76, 763-775. https://doi.org/10.1093/jpp/rgae024 https://pubmed.ncbi.nlm.nih.gov/38470222/ |
[51] | Al-Rubiay, H.F., Al-Kuraishy, H.M., Al-Gareeb, A.I., et al. (2021) Intercellular Adhesive Molecule 1(ICAM-1) and Acute Ischaemic Stroke: Role of Statins. Journal of the Pakistan Medical Association, 71, S11-S16. https://pubmed.ncbi.nlm.nih.gov/35130210/ |
[52] | Rothwarf, D.M. and Karin, M. (1999) The NF-Kappa B Activation Pathway: A Paradigm in Information Transfer from Membrane to Nucleus. Science’s STKE, No. 5, RE1. https://pubmed.ncbi.nlm.nih.gov/11865184/ |
[53] | Chen, Z., Xiang, Y., Bao, B., Wu, X., Xia, Z., You, J., et al. (2018) Simvastatin Improves Cerebrovascular Injury Caused by Ischemiareperfusion through NF-κB-Mediated Apoptosis via Myd88/TRIF Signaling. Molecular Medicine Reports, 18, 3177-3184. https://doi.org/10.3892/mmr.2018.9337 https://pubmed.ncbi.nlm.nih.gov/30066928/ |
[54] | Kostapanos, M.S. (2011) JUPITER and Satellites: Clinical Implications of the JUPITER Study and Its Secondary Analyses. World Journal of Cardiologyy, 3, 207-214. https://doi.org/10.4330/wjc.v3.i7.207 https://pubmed.ncbi.nlm.nih.gov/21860701/ |
[55] | Panbhare, K., Pandey, R., Chauhan, C., Sinha, A., Shukla, R. and Kaundal, R.K. (2023) Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chemical Neuroscience, 15, 31-55. https://doi.org/10.1021/acschemneuro.3c00536 https://pubmed.ncbi.nlm.nih.gov/38118278/ |
[56] | Ran, L., Chen, M., Ye, J., Zhang, S., Luo, Z., Bai, T., et al. (2024) UK5099 Inhibits the NLRP3 Inflammasome Independently of Its Long‐Established Target Mitochondrial Pyruvate Carrier. Advanced Science, 11, Article 2307224. https://doi.org/10.1002/advs.202307224 https://pmc.ncbi.nlm.nih.gov/articles/PMC11434118/#advs8841-sec-0100 |
[57] | Huang, B., Qian, Y., Xie, S., et al. (2021) Ticagrelor Inhibits the NLRP3 Inflammasome to Protect against Inflammatory Disease Independent of the P2Y12 Signaling Pathway. Cellular & Molecular Immunology, 18, 1278-1289 https://pubmed.ncbi.nlm.nih.gov/32523112/ |
[58] | Lee, J. and McCullough, L.D. (2022) Revisiting Regulatory T Cells for Stroke Therapy. Journal of Clinical Investigation, 132, e161703. https://doi.org/10.1172/jci161703 https://pubmed.ncbi.nlm.nih.gov/35912860/ |
[59] | Thornton, A.M., Donovan, E.E., Piccirillo, C.A. and Shevach, E.M. (2004) Cutting Edge: IL-2 Is Critically Required for the in Vitro Activation of CD4+CD25+ T Cell Suppressor Function. The Journal of Immunology, 172, 6519-6523. https://doi.org/10.4049/jimmunol.172.11.6519 https://pubmed.ncbi.nlm.nih.gov/15153463/ |
[60] | Wardell, C.M., MacDonald, K.N., Levings, M.K. and Cook, L. (2020) Cross Talk between Human Regulatory T Cells and Antigen‐Presenting Cells: Lessons for Clinical Applications. European Journal of Immunology, 51, 27-38. https://doi.org/10.1002/eji.202048746 https://pubmed.ncbi.nlm.nih.gov/33301176/ |
[61] | Wilczynski, J.R. (2008) The Characterization and Role of Regulatory T Cells in Immune Reactions. Frontiers in Bioscience, 13, 2266-2274. https://doi.org/10.2741/2840 https://pubmed.ncbi.nlm.nih.gov/17981708/ |
[62] | Gravano, D.M. and Vignali, D.A. (2012) The Battle against Immunopathology: Infectious Tolerance Mediated by Regulatory T Cells. Cellular and Molecular Life Sciences, 69, 1997-2008. https://pubmed.ncbi.nlm.nih.gov/22205213/ |
[63] | Sakaguchi, S. (2000) Regulatory T Cells. Key Controllers of Immunologic Self-Tolerance. Cell, 101, 455-458. https://doi.org/10.1016/s0092-8674(00)80856-9 https://pubmed.ncbi.nlm.nih.gov/10850488/ |
[64] | Wang, H., Ye, J., Cui, L., Chu, S. and Chen, N. (2022) Regulatory T Cells in Ischemic Stroke. Acta Pharmacologica Sinica, 43, 1-9. https://doi.org/10.1038/s41401-021-00641-4 https://pubmed.ncbi.nlm.nih.gov/33772140/ |
[65] | Liesz, A., Zhou, W., Na, S., Hämmerling, G.J., Garbi, N., Karcher, S., et al. (2013) Boosting Regulatory T Cells Limits Neuroinflammation in Permanent Cortical Stroke. The Journal of Neuroscience, 33, 17350-17362. https://doi.org/10.1523/jneurosci.4901-12.2013 https://pubmed.ncbi.nlm.nih.gov/24174668/ |