全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于经验似然INAR(1)模型离群点的检测与估计
Detection and Estimation of Outliers in the Empirical Likelihood INAR(1) Model

DOI: 10.12677/aam.2025.146307, PP. 135-147

Keywords: 离群值,经验似然,INAR(1)模型
Outlier
, Empirical Likelihood, INAR(1) Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

整值时间序列可出现在教育,金融,医疗,交通等诸多领域,本文旨在研究利用经验似然方法对整值时间序列中的加性离群点与新息离群点进行检测与估计,并针对凸包问题进行了详细讨论,最后通过数值模拟充分验证了经验似然方法检测离群点的有效性。仿真实验结果表明,经验似然方法可以有效检测与估计出不同新息分布下一阶整值时间序列模型中的离群点。
Integer-valued time series can appear in various fields such as education, finance, healthcare, and transportation. This paper aims to investigate the detection and estimation of additive outliers and innovation outliers in integer-valued time series based on the empirical likelihood method. Additionally, the convex hull problem is discussed in detail. Finally, numerical simulations are conducted to fully verify the effectiveness of the empirical likelihood method in detecting outliers. The simulation results show that the empirical likelihood method can effectively detect and estimate outliers in first-order integer-valued time series models with different innovation distributions.

References

[1]  Owen, A. (1990) Empirical Likelihood Ratio Confidence Regions. The Annals of Statistics, 18, 90-120.
https://doi.org/10.1214/aos/1176347494
[2]  Owen, A.B. (1988) Empirical Likelihood Ratio Confidence Intervals for a Single Functional. Biometrika, 75, 237-249.
https://doi.org/10.1093/biomet/75.2.237
[3]  Owen, A. (1991) Empirical Likelihood for Linear Models. The Annals of Statistics, 19, 1725-1747.
https://doi.org/10.1214/aos/1176348368
[4]  Qin, J. and Lawless, J. (1994) Empirical Likelihood and General Estimating Equations. The Annals of Statistics, 22, 300-325.
https://doi.org/10.1214/aos/1176325370
[5]  Tang, C.Y. and Leng, C. (2010) Penalized High-Dimensional Empirical Likelihood. Biometrika, 97, 905-920.
https://doi.org/10.1093/biomet/asq057
[6]  Shi, J. and Lau, T. (2000) Empirical Likelihood for Partially Linear Models. Journal of Multivariate Analysis, 72, 132-148.
https://doi.org/10.1006/jmva.1999.1866
[7]  Wei, C., Luo, Y. and Wu, X. (2010) Empirical Likelihood for Partially Linear Additive Errors-in-Variables Models. Statistical Papers, 53, 485-496.
https://doi.org/10.1007/s00362-010-0354-1
[8]  Liu, T. and Yuan, X. (2015) Weighted Quantile Regression with Missing Covariates Using Empirical Likelihood. Statistics, 50, 89-113.
https://doi.org/10.1080/02331888.2015.1033164
[9]  Kitamura, Y. (1997) Empirical Likelihood Methods with Weakly Dependent Processes. The Annals of Statistics, 25, 2084-2102.
https://doi.org/10.1214/aos/1069362388
[10]  Monti, A. (1997) Empirical Likelihood Confidence Regions in Time Series Models. Biometrika, 84, 395-405.
https://doi.org/10.1093/biomet/84.2.395
[11]  Chuang, C.S. and Chan, N.H. (2002) Empirical Likelihood for Autoregressive Model, with Applications to Unstable Time Series. Statistica Sinica, 12, 387-407.
[12]  Chan, N.H. and Ling, S. (2006) Empirical Likelihood for GARCH Models. Econometric Theory, 22, 403-428.
https://doi.org/10.1017/s0266466606060208
[13]  Zhao, Z. and Wang, D. (2011) Empirical Likelihood for an Autoregressive Model with Explanatory Variables. Communications in StatisticsTheory and Methods, 40, 559-570.
https://doi.org/10.1080/03610920903411267
[14]  Nordman, D.J. and Lahiri, S.N. (2014) A Review of Empirical Likelihood Methods for Time Series. Journal of Statistical Planning and Inference, 155, 1-18.
https://doi.org/10.1016/j.jspi.2013.10.001
[15]  Fox, A.J. (1972) Outliers in Time Series. Journal of the Royal Statistical Society Series B: Statistical Methodology, 34, 350-363.
https://doi.org/10.1111/j.2517-6161.1972.tb00912.x
[16]  Tsay, R.S. (1988) Outliers, Level Shifts, and Variance Changes in Time Series. Journal of Forecasting, 7, 1-20.
https://doi.org/10.1002/for.3980070102
[17]  Fokianos, K. and Fried, R. (2010) Interventions in INGARCH Processes. Journal of Time Series Analysis, 31, 210-225.
https://doi.org/10.1111/j.1467-9892.2010.00657.x
[18]  Fried, R., Liboschik, T., Elsaied, H., Kitromilidou, S. and Fokianos, K. (2014) On Outliers and Interventions in Count Time Series Following GLMs. Austrian Journal of Statistics, 43, 181-193.
https://doi.org/10.17713/ajs.v43i3.30
[19]  Barczy, M., Ispány, M., Pap, G., Scotto, M. and Eduarda Silva, M. (2010) Innovational Outliers in INAR(1) Models. Communications in StatisticsTheory and Methods, 39, 3343-3362.
https://doi.org/10.1080/03610920903259831
[20]  Barczy, M., Ispány, M., Pap, G., Scotto, M. and Silva, M.E. (2011) Additive Outliers in INAR(1) Models. Statistical Papers, 53, 935-949.
https://doi.org/10.1007/s00362-011-0398-x
[21]  Silva, M.E. and Pereira, I. (2012) Detection of Additive Outliers in Poisson Integer-Valued Autoregressive Time Series.
[22]  Baragona, R., Battaglia, F. and Cucina, D. (2015) Empirical Likelihood for Outlier Detection and Estimation in Autoregressive Time Series. Journal of Time Series Analysis, 37, 315-336.
https://doi.org/10.1111/jtsa.12145
[23]  Shang, H. and Zhang, B. (2018) Outliers Detection in INAR (1) Time Series. Journal of Physics: Conference Series, 1053, Article 012094.
https://doi.org/10.1088/1742-6596/1053/1/012094
[24]  Chen, J., Variyath, A.M. and Abraham, B. (2008) Adjusted Empirical Likelihood and Its Properties. Journal of Computational and Graphical Statistics, 17, 426-443.
https://doi.org/10.1198/106186008x321068
[25]  Emerson, S.C. and Owen, A.B. (2009) Calibration of the Empirical Likelihood Method for a Vector Mean. Electronic Journal of Statistics, 3, 1161-1192.
https://doi.org/10.1214/09-ejs518
[26]  Tsao, M. (2013) Extending the Empirical Likelihood by Domain Expansion. Canadian Journal of Statistics, 41, 257-274.
https://doi.org/10.1002/cjs.11175
[27]  Ferland, R., Latour, A. and Oraichi, D. (2006) Integer-Valued GARCH Process. Journal of Time Series Analysis, 27, 923-942.
https://doi.org/10.1111/j.1467-9892.2006.00496.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133