全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性模型的经验无偏刀切Liu估计
Empirical Unbiased Jackknifed Liu Estimator in Linear Model

DOI: 10.12677/aam.2025.146305, PP. 104-118

Keywords: 经验无偏估计,刀切Liu估计,线性模型,均方误差均阵
Empirical Unbiased Estimator
, Jackknifed Liu Estimator, Linear Model, Mean Square Error Matrix

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要对线性模型中回归系数的经验无偏刀切Liu估计进行研究。首先,在刀切Liu估计的基础上构造了经验无偏刀切Liu估计;其次,基于均方误差准则分析了该估计的优良性质。最后,基于数值模拟和实例分析论证了估计的优良性质。结果表明:提出的经验无偏刀切Liu估计在具有无偏性的同时一致优于普通最小二乘估计,并在一定的条件下优于Liu估计和刀切Liu估计。
In this paper, we mainly investigate the empirical unbiased Jackknifed Liu estimator of regression coefficient in linear model. Firstly, an unbiased Jackknifed Liu estimator with prior information is obtained based on the Jackknifed Liu estimator. Secondly, the excellent properties of the estimator are analyzed based on mean square error matrix. Finally, numerical simulation and real data analysis are used to demonstrate the dominance property. It is shown that empirical unbiased Jackknifed Liu estimator is consistently superior to ordinary least square estimator while maintaining unbiasedness, and outperforms both Liu estimator and Jackknifed Liu estimator.

References

[1]  Stein, C. (1956) Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution. In: Neyman, J., Ed., Proceedings of the Third Berkley Symposium on Mathematical and Statistics Probability, University of California Press, 197-206.
https://doi.org/10.1525/9780520313880-018
[2]  Massy, W.F. (1965) Principal Components Regression in Exploratory Statistical Research. Journal of the American Statistical Association, 60, 234-256.
https://doi.org/10.1080/01621459.1965.10480787
[3]  Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for Non-Orthogonal Problems. Technometrics, 12, 55-67.
https://doi.org/10.1080/00401706.1970.10488634
[4]  Liu, K. (1993) A New Class of Biased Estimate in Linear Regression. Communications in Statistics-Theory and Methods, 22, 393-402.
https://doi.org/10.1080/03610929308831027
[5]  Özkale, M.R. and Kaçiranlar, S. (2007) The Restricted and Unrestricted Two-Parameter Estimators. Communications in Statistics-Theory and Methods, 36, 2707-2725.
https://doi.org/10.1080/03610920701386877
[6]  Quenouille, M.H. (1949) Approximate Tests of Correlation in Time Series. Journal of the American Statistical Association, 11, 68-84.
https://doi.org/10.1111/j.2517-6161.1949.tb00023.x
[7]  Kadiyala, K. (1984) A Class of Almost Unbiased and Efficient Estimators of Regression Coefficients. Economics Letters, 16, 293-296.
https://doi.org/10.1016/0165-1765(84)90178-2
[8]  Wu, J. and Yang, H. (2013) Efficiency of an Almost Unbiased Two-Parameter Estimator in Linear Regression Model. Statistics, 47, 535-545.
https://doi.org/10.1080/02331888.2011.605891
[9]  Lukman, A.F., Ayinde, K., Binuomote, S. and Clement, O.A. (2019) Modified Ridge-Type Estimator to Combat Multicollinearity: Application to Chemical Data. Journal of Chemometrics, 33, e3125.
[10]  Erdugan, F. (2024) An Almost Unbiased Liu-Type Estimator in the Linear Regression Model. Communications in Statistics-Simulation and Computation, 53, 3081-3093.
https://doi.org/10.1080/03610918.2022.2098329
[11]  Yıldız, N. (2018) On the Performance of the Jackknifed Liu-Type Estimator in Linear Regression Model. Communications in Statistics-Theory and Methods, 47, 2278-2290.
https://doi.org/10.1080/03610926.2017.1339087
[12]  Ugwuowo, F.I., Oranye, H.E. and Arum, K.C. (2023) On the Jackknife Kibria-Lukman Estimator for the Linear Regression Model. Communication in Statistics-Simulation and Computation, 52, 6116-6128.
https://doi.org/10.1080/03610918.2021.2007401
[13]  Crouse, R.H., Jin, C. and Hanumara, R.C. (1995) Unbiased Ridge Estimation with Prior Information and Ridge Trace. Communications in Statistics-Theory and Methods, 24, 2341-2354.
https://doi.org/10.1080/03610929508831620
[14]  Sakallioglu, S. and Akdeniz, F. (2003) Unbiased Liu Estimation with Prior Information. International Journal of Mathematical Sciences, 2, 205-217.
[15]  Wu, J. (2014) An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model. The Scientific World Journal, 2014, Article 206943.
https://doi.org/10.1155/2014/206943
[16]  Lukman, A.F., Ayinde, K., Aladeitan, B. and Bamidele, R. (2020) An Unbiased Estimator with Prior Information. Arab Journal of Basic and Applied Sciences, 27, 45-55.
https://doi.org/10.1080/25765299.2019.1706799
[17]  Duran, E.K. and Akdeniz, F. (2012) Efficiency of the Modified Jackknifed Liu-Type Estimator. Statistical Papers, 53, 265-280.
https://doi.org/10.1007/s00362-010-0334-5
[18]  Farebrother, R.W. (1976) Further Results on the Mean Square Error of Ridge Regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 38, 248-250.
https://doi.org/10.1111/j.2517-6161.1976.tb01588.x
[19]  Dorugade, A.V. (2016) Adjusted Ridge Estimator and Comparison with Kibria’s Method in Linear Regression. Journal of the Association of Arab Universities for Basic and Applied Sciences, 21, 96-102.
https://doi.org/10.1016/j.jaubas.2015.04.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133