|
基于一题多解的数学分析思维拓展路径研究——以第二型曲面积分的计算为例
|
Abstract:
本文采用案例分析法,给出了一道经典第二型曲面积分的多种解法(如直接投影法、二化一法(合项法)、归一法、高斯公式法、参数方程法、轮换对称性法、物理意义法等),并构建了第二型曲面积分计算方法的决策树,给出了一题多解的教学启示。
This paper employs the case analysis method to present multiple approaches to solving a classic second-type surface integral (such as the direct projection method, the “two-to-one” method, the normalization method, the Gauss formula method, the parametric equation method, the rotational symmetry method, and the physical interpretation method). Based on these, a decision tree for calculating second-type surface integrals is constructed, along with pedagogical insights into the multi-solution approach to problem-solving.
[1] | 华东师范大学数学科学学院. 数学分析(第五版(下册)) [M]. 北京: 高等教育出版社, 2019. |
[2] | 陈丹丹. 简化积分计算的一类方法[J]. 赤峰学院学报(自然科学版), 2018, 34(8): 14-16. |
[3] | 杨雯靖. 第二类曲面积分的计算方法探讨[J]. 数学学习与研究, 2015(17): 93-94. |