全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于一题多解的数学分析思维拓展路径研究——以第二型曲面积分的计算为例
Research on the Path of Expanding Mathematical Analysis Thinking Based on Multiple Solutions to a Single Problem—Taking the Calculation of the Second-Type Surface Integral as an Example

DOI: 10.12677/aam.2025.146303, PP. 88-93

Keywords: 一题多解,数学分析,思维拓展,第二型曲面积分
Multiple Solutions to a Single Problem
, Mathematical Analysis, Thinking Expansion, Second-Type Surface Integral

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用案例分析法,给出了一道经典第二型曲面积分的多种解法(如直接投影法、二化一法(合项法)、归一法、高斯公式法、参数方程法、轮换对称性法、物理意义法等),并构建了第二型曲面积分计算方法的决策树,给出了一题多解的教学启示。
This paper employs the case analysis method to present multiple approaches to solving a classic second-type surface integral (such as the direct projection method, the “two-to-one” method, the normalization method, the Gauss formula method, the parametric equation method, the rotational symmetry method, and the physical interpretation method). Based on these, a decision tree for calculating second-type surface integrals is constructed, along with pedagogical insights into the multi-solution approach to problem-solving.

References

[1]  华东师范大学数学科学学院. 数学分析(第五版(下册)) [M]. 北京: 高等教育出版社, 2019.
[2]  陈丹丹. 简化积分计算的一类方法[J]. 赤峰学院学报(自然科学版), 2018, 34(8): 14-16.
[3]  杨雯靖. 第二类曲面积分的计算方法探讨[J]. 数学学习与研究, 2015(17): 93-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133