|
基于实践波利亚解题表的教学案例研究——以2023年上海数学中考题为例
|
Abstract:
随着《义务教育数学课程标准(2022年版)》发布,上海中考试卷也随之发生改变。中考数学试卷更加注重对于学生思维能力的考查,其中25题区分度很高,成为广大师生研究的重点题型。鉴于此,本文基于波利亚的解题思想,以2023年上海市中考数学题25题为例,探讨教师在课堂教学中如何帮助学生提升思维能力,找到问题切入点及解题方法。
With the release of the “Compulsory Education Mathematics Curriculum Standards (2022 Edition)”, the Shanghai middle school entrance examination papers have also undergone changes. The mathematics papers of the middle school entrance examination now place greater emphasis on the assessment of students’ thinking abilities, among which question 25 has a high degree of discrimination and has become a key type of question for both teachers and students to study. In light of this, this article, based on Polya’s problem-solving ideas, takes question 25 of the 2023 Shanghai middle school entrance examination mathematics paper as an example, explores how teachers can help students enhance their thinking abilities in classroom teaching, find the entry point of the problem, and discover the solution methods.
[1] | 中华人民共和国教育部. 义务教育数学课程标准(2022年版) [M]. 北京: 北京师范大学出版社, 2022. |
[2] | 方慧佳,王家正. 上海市近三年中考数学试题整体解读比较剖析[J]. 理科考试研究, 2023, 30(20): 2-5. |
[3] | 波利亚. 怎样解题[M]. 北京: 科学出版社, 1982: 序言. |
[4] | 沈威, 陆珺. 培养学生建构知识关系能力的个案研究——以“平行四边形复习课”为例[J]. 数学教育学报, 2024, 33(4): 34-39. |
[5] | 孟彩彩, 巩铠玮. 基于波利亚“怎样解题表”的习题教学案例研究——以“函数的零点”为例[J]. 数学教学通讯, 2022(9): 6-8. |