|
λ函数可微性及其优化理论
|
Abstract:
本文深入研究了模糊函数的可微性及其在优化问题中的应用。针对现有研究的不足,本文进行了以下核心贡献:1) 统一模糊函数的可微性理论:梳理了H可微、S可微、G可微等不同可微性定义的逻辑脉络,构建了统一的理论框架,为研究者选择合适的可微性定义提供了指导。2) 构建模糊优化的KKT条件:针对模糊优化问题,建立了KKT条件的统一框架,使得这些理论在实际应用中可以更灵活地解决多样化的模糊优化问题。本文进一步分析了模糊序关系对KKT条件的特殊性影响,并通过模糊截集运算的置信水平优化,提出了适用于G可微的框架。
This paper conducts an in-depth study on the differentiability of fuzzy functions and their application in optimization problems. In response to the deficiencies of existing research, this paper makes the following core contributions: 1) Unifying the differentiability theory of fuzzy functions: This paper clarifies the logical connections between different differentiability definitions, such as H-differentiability, S-differentiability, and G-differentiability, and constructs a unified theoretical framework. This provides guidance for researchers to choose the appropriate differentiability definition. 2) Developing KKT conditions for fuzzy optimization: A unified framework of KKT conditions is established for fuzzy optimization problems, enabling these theories to be more flexibly applied to solve diverse fuzzy optimization problems in practice. This paper further analyzes the special influence of the fuzzy order relation on the KKT condition, and through the confidence level optimization of the fuzzy truncated set operation, proposes a framework suitable for G-differentiability.
[1] | Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x |
[2] | Shi, F.F., Ye, G.J., Liu, W. and Zhao, D.F. (2023) A Class of Nonconvex Fuzzy Optimization Problems under Granular Differentiability Concept. Mathematics and Computers in Simulation, 211, 430-444. https://doi.org/10.1016/j.matcom.2023.04.021 |
[3] | 王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑: 信息科学, 2006(8): 891-901. |
[4] | Ahmad, O. and Ahmad Dar, A. (2024) Biquaternion Ambiguity Function and Associated Uncertainty Principles. International Journal of Geometric Methods in Modern Physics, 22, Article ID: 2450309. https://doi.org/10.1142/s0219887824503092 |
[5] | 吴青. 基于优化理论的支持向量机学习算法研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2009. |
[6] | 李洪亮, 裴慧丽, 吴从炘. Zadeh扩张原理下模糊数空间的代数结构[J]. 模糊系统与数学, 2014, 28(1): 84-87. |
[7] | Zadeh, L.A. (1975) The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I. Information Sciences, 8, 199-249. https://doi.org/10.1016/0020-0255(75)90036-5 |
[8] | Aguilera, A., Carrasquel, S., Coronado, D., Monascal, R., Rodríguez, R. and Tineo, L. (2021) An Ordering of Fuzzy Numbers Based on the Zadeh Extension Principle. Soft Computing, 26, 3091-3106. https://doi.org/10.1007/s00500-021-06470-1 |
[9] | 王浩, 庄钊文. 模糊可靠性分析中的隶属函数确定[J]. 电子产品可靠性与环境试验, 2000(4): 2-7. |
[10] | 张萌. 统一模糊可靠性模型理论研究及叶片抗振模糊可靠性评估建模[D]: [博士学位论文]. 西安: 西北工业大学, 2015. |
[11] | Stefanini, L. (2010) A Generalization of Hukuhara Difference and Division for Interval and Fuzzy Arithmetic. Fuzzy Sets and Systems, 161, 1564-1584. https://doi.org/10.1016/j.fss.2009.06.009 |
[12] | 巩增泰, 李红霞. 模糊数值函数的微分和梯度及其应用[J]. 高校应用数学学报A辑, 2010, 25(2): 229-238. |
[13] | Syau, Y. (1999) On Convex and Concave Fuzzy Mappings. Fuzzy Sets and Systems, 103, 163-168. https://doi.org/10.1016/s0165-0114(97)00210-8 |
[14] | Khan, M.B., Santos-García, G., Noor, M.A. and Soliman, M.S. (2022) Some New Concepts Related to Fuzzy Fractional Calculus for up and down Convex Fuzzy-Number Valued Functions and Inequalities. Chaos, Solitons & Fractals, 164, Article ID: 112692. https://doi.org/10.1016/j.chaos.2022.112692 |
[15] | 秦传东. 模糊与双重正则化支持向量机的研究及应用[D]: [博士学位论文]. 西安: 西安电子科技大学, 2012. |
[16] | 李立峰. 模糊一致凸规划的最优性与对偶性研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2016. |
[17] | 孙广玲, 唐降龙. 基于梯度归一化的模糊梯度特征提取方法[J]. 哈尔滨工业大学学报, 2006, 38(12): 2030-2035. |
[18] | Charitopoulos, V.M., Papageorgiou, L.G., Du, V. 不确定条件下采用精确参数规划的非线性模型过程操作[J]. En-gineering, 2017, 3(2): 116-140. |
[19] | 李媛媛, 李军祥, 党亚峥, 等. 基于KKT条件智能电网实时定价的光滑牛顿算法[J]. 系统科学与数学, 2020, 40(4): 646-656. |