The rapid adoption of generative AI tools in legal education has sparked debates on establishing norms for AI use. These tools assist in assignments, translating legal documents, and research. Smart classrooms, with intelligent tutoring and emotion recognition technology, enhance teaching and learning but also pose risks like system errors, algorithmic discrimination, and decision opacity. This article examines the construction and benefits of smart classrooms, real-world integration challenges, and the effectiveness and risks of facial recognition technology, especially for diverse learning styles. It concludes best practices and recommendations to mitigate risks and promote a secure, effective educational environment.
References
[1]
Andrejevic, M., & Selwyn, N. (2022). FacialRecognition. Polity Press.
[2]
Bala, N. (2020). The Danger of Facial Recognition in Our Children’s Classrooms. DukeLaw&TechnologyReview,18, 249-267.
[3]
Bidwell, J., & Fuchs, H. (2011). Classroom Analytics: Measuring Student Engagement with Automated Gaze Tracking. Behavior Research Methods, 49, 113.
[4]
Bousquet, A. (2018). TheEyeofWar: Military Perception from the Telescope to the Drone. University of Minnesota Press. https://doi.org/10.5749/j.ctv6hp332
[5]
Chen, S., & Jin, Q. (2015). Multi-Modal Dimensional Emotion Recognition Using Recurrent Neural Networks. In Proceedingsofthe5thInternationalWorkshoponAudio/VisualEmotionChallenge (pp. 49-56). ACM. https://doi.org/10.1145/2808196.2811638
[6]
Feferbaum, M., & Klafke, G. F. (2021). Prova na frente das câmeras? É hora de mudar o foco! | Estratégias para avaliação de estudantes em cursos mediados por tecnologia. In M. Murashima (Ed.), Experiênciasnaeducaçãomediadaportecnologias (pp. 364-383). FGV Editora.
[7]
Feferbaum, M., & Radomysler, C. N. (2021). Entre conexões e desconexões. Metodologias ativas e humanização como pilares de um ensino mediado por tecnologia. In M. Murashima (Ed.), Experiênciasnaeducaçãomediadaportecnologias (pp. 147-163). FGV Editora.
[8]
Ferguson, R. (2012). Learning Analytics: Drivers, Developments and Challenges. InternationalJournalofTechnologyEnhancedLearning,4, 304-317. https://doi.org/10.1504/ijtel.2012.051816
[9]
Gasser, U., & Mayer-Schönberger, V. (2024). Guardrails:GuidingHumanDecisionsintheAgeofAI. Princeton University Press.
[10]
Gligoric, N., Uzelac, A., Krco, S., Kovacevic, I., & Nikodijevic, A. (2015). Smart Classroom System for Detecting Level of Interest a Lecture Creates in a Classroom. JournalofAmbientIntelligenceandSmartEnvironments,7, 271-284. https://doi.org/10.3233/ais-150303
[11]
Gu, Y. et al. (2016). Speech Emotion Recognition Using Voiced Segment Selection Algorithm. In Proceedings of the 22nd European Conference on Artificial Intelligence (pp. 1682-1683). The Association for Computing Machinery.
[12]
Hartzog, W., & Selinger, E. (2018). FacialRecognitionIsthePerfectToolforOppression. Medium. https://medium.com/@hartzog/facial-recognition-is-the-perfect-tool-for-oppression-bc2a08f0fe66
[13]
Kaur, A., Bhatia, M., & Stea, G. (2022). A Survey of Smart Classroom Literature. EducationSciences,12, Article No. 86. https://doi.org/10.3390/educsci12020086
[14]
Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K., & Mahjoub, M. A. (2017). A Review on Speech Emotion Recognition: Case of Pedagogical Interaction in Classroom. In 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 1-7). IEEE. https://doi.org/10.1109/atsip.2017.8075575
[15]
Kim, Y., Soyata, T., & Behnagh, R. F. (2018). Towards Emotionally Aware AI Smart Classroom: Current Issues and Directions for Engineering and Education. IEEE Access, 6, 5308-5331. https://doi.org/10.1109/access.2018.2791861
[16]
Madiega, T., & Mildebrath, H. (2021). RegulatingFacialRecognitionintheEU. European Parliamentary Research Service, European Union. https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/698021/EPRS_IDA(2021)698021_EN.pdf
[17]
Papamitsiou, Z., & Economides, A. A. (2016). Learning Analytics for Smart Learning Environments: A Meta-Analysis of Empirical Research Results from 2009 to 2015. In Learning,Design,andTechnology (pp. 1-23). Springer International Publishing. https://doi.org/10.1007/978-3-319-17727-4_15-1
[18]
Patel, U. A., & Priya, S. (2014). Development of a Student Attendance Management System Using RFID and Face Recognition: A Review. International Journal of Advance Research in Computer Science and Management Studies, 2, 109-119.
[19]
Romero, C., & Ventura, S. (2013). Data Mining in Education. WIREsDataMiningandKnowledgeDiscovery,3, 12-27. https://doi.org/10.1002/widm.1075
[20]
Saini, M. K., & Goel, N. (2021). How Smart Are Smart Classrooms? A Review of Smart Classroom Technologies. ACM Computing Surveys, 52, Article No. 130. https://doi.org/10.1145/3365757
[21]
Saltman, K. (2016). ScriptedBodies. Routledge.
[22]
Stark, L. (2019). Facial Recognition Is the Plutonium of AI. XRDS:Crossroads,theACMMagazineforStudents,25, 50-55. https://doi.org/10.1145/3313129
[23]
Williamson, B. (2017). BigDatainEducation. Sage.
[24]
Yang, S., & Chen, L. (2011). A Face and Eye Detection Based Feedback System for Smart Classroom. In Proceedingsof2011InternationalConferenceonElectronic&MechanicalEngineeringandInformationTechnology (pp. 571-574). IEEE. https://doi.org/10.1109/emeit.2011.6023166
[25]
Yu, Y.-C., You, S.-C. D., & Tsai, D.-R. (2012). Social Interaction Feedback System for the Smart Classroom. In Proceedings of the 2012 IEEE International Conference on Consumer Electronics (ICCE) (pp. 500-501). IEEE.
[26]
Yuan, Q. (2022). Research on Classroom Emotion Recognition Algorithm Based on Visual Emotion Classification. ComputationalIntelligenceandNeuroscience,2022, Article ID: 6453499. https://doi.org/10.1155/2022/6453499
[27]
Zapalska, A. M., & Dabb, H. (2002). Learning Styles. JournalofTeachinginInternationalBusiness,13, 77-97. https://doi.org/10.1300/j066v13n03_06