全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis and Reinterpretation of the Minimal Higgs Sector

DOI: 10.4236/jmp.2025.166043, PP. 815-842

Keywords: Higgs Fields, Faddeev-Popov Ghosts, Quantum Field Theory, Electroweak Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

The time evolution of the Higgs, the Faddeev-Popov ghost fields, and the gauge phase functions of the standard model are analyzed using the ghost Lagrangian density from Chapter 11 of Taylor’s “Gauge Theories of Weak Interactions”. The results assume that the amplitudes of the vector bosons are negligible for homogeneous solutions. With a broken SU(2) × U(1) symmetry, 3 of the 4 Higgs fields have no physical significance independent of the 3 vector bosons W1, W2 and Z. However, with a literal interpretation of the ghost Lagrangian density, the Higgs ghost fields are found to have independent physical significance. It is found that the Higgs, ghosts, and gauge functions are both the occupants and the generators of gratings which can be interpreted as the “potential wells” of mass matrices of an anomaly-free quantum field theory. This implies that the charged and uncharged ghosts of the minimal Higgs sector can be interpreted as preons. One set of consequences of this standard-model-based analysis is that neutrinos are found to have mass and also mass oscillations.

References

[1]  Taylor, J.C. (1976) Gauge Theories of Weak Interactions. Cambridge University Press.
[2]  Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264-1266.
https://doi.org/10.1103/physrevlett.19.1264
[3]  Weinberg, S. (1996) The Quantum Theory of Fields. Cambridge University Press.
https://doi.org/10.1017/cbo9781139644174
[4]  Peskin, M. and Schroeder, D. (1995) Introduction to Quantum Field Theory. Perseus.
https://doi.org/10.1201/9780429503559
[5]  Yang, C.N. and Mills, R. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/PhysRev.96.191
[6]  Faddeev, L.D. and Popov, V.N. (1967) Feynman Diagrams for the Yang-Mills Field. Physics Letters B, 25, 29-30.
https://doi.org/10.1016/0370-2693(67)90067-6
[7]  Feynman, R.P. (1963) Quantum Theory of Gravitation. Acta Physica Polonica, 24, 697-722.
[8]  ‘tHooft, G. (1971) Renormalization of Massless Yang-Mills Fields. Nuclear Physics B, 33, 173-199.
https://doi.org/10.1016/0550-3213(71)90395-6
[9]  Hooft, G. (1971) Renormalizable Lagrangians for Massive Yang-Mills Fields. Nuclear Physics B, 35, 167-188.
https://doi.org/10.1016/0550-3213(71)90139-8
[10]  Hooft, G. and Veltman, M. (1972) Combinatorics of Gauge Fields. Nuclear Physics B, 50, 318-353.
https://doi.org/10.1016/s0550-3213(72)80021-x
[11]  Lee, B.W. and Zinn-Justin, J. (1972) Spontaneously Broken Gauge Symmetries. I. Preliminaries. Physical Review D, 5, 3121-3137.
https://doi.org/10.1103/physrevd.5.3121
[12]  Lee, B.W. and Zinn-Justin, J. (1972) Spontaneously Broken Gauge Symmetries. II. Perturbation Theory and Renormalization. Physical Review D, 5, 3137-3155.
https://doi.org/10.1103/physrevd.5.3137
[13]  Lee, B.W. and Zinn-Justin, J. (1972) Spontaneously Broken Gauge Symmetries. III. Equivalence. Physical Review D, 5, 3155-3160.
https://doi.org/10.1103/physrevd.5.3155
[14]  Lee, B.W. and Zinn-Justin, J. (1973) Spontaneously Broken Gauge Symmetries. IV. General Gauge Formulation. Physical Review D, 7, 1049-1056.
https://doi.org/10.1103/physrevd.7.1049
[15]  Kibble, T.W.B. (1967) Symmetry Breaking in Non-Abelian Gauge Theories. Physical Review, 155, 1554-1561.
https://doi.org/10.1103/physrev.155.1554
[16]  Kallosh, R.E. and Tyutin, I.V. (1973) The Equivalence Theorem and Gauge Invariance in Renormalizable Theories. Soviet Journal of Nuclear Physics, 17, 98-106.
[17]  Ross, D.A. and Taylor, J.C. (1973) Renormalization of a Unified Theory of Weak and Electromagnetic Interactions. Nuclear Physics B, 51, 125-144.
https://doi.org/10.1016/0550-3213(73)90505-1
[18]  Becchi, C., Rouet, A. and Stora, R. (1976) Renormalization of Gauge Theories. Annals of Physics, 98, 287-321.
https://doi.org/10.1016/0003-4916(76)90156-1
[19]  Thomson, M. (2013) Modern Particle Physics. Cambridge University Press.
https://doi.org/10.1017/cbo9781139525367
[20]  Kane, G. (1993) Modern Elementary Particle Physics. Updated Edition, Perseus, 111-112.
[21]  Rugh, S.E. and Zinkernagel, H. (2002) The Quantum Vacuum and the Cosmological Constant Problem. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 33, 663-705.
https://doi.org/10.1016/s1355-2198(02)00033-3
[22]  Holmes, R.B. (2025) Derivation and Fits of Fermion Masses from the Higgs Sector. Journal of Modern Physics, 16, 613-626.
https://doi.org/10.4236/jmp.2025.164033
[23]  Holmes, R. (2021) A Quantum Field Theory with Permutational Symmetry. 2nd Edition, Lambert Academic Press.
https://doi.org/10.5281/zenodo.5047237
[24]  Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86.
https://doi.org/10.1016/0370-2693(79)90626-9
[25]  Harari, H. and Seiberg, N. (1982) The Rishon Model. Nuclear Physics B, 204, 141-167.
https://doi.org/10.1016/0550-3213(82)90426-6
[26]  Shupe, M.A. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92.
https://doi.org/10.1016/0370-2693(79)90627-0
[27]  D’Souza, I.A. and Kalman, C.S. (1992) Preons: Models of Leptons, Quarks, and Gauge Bosons as Composite Objects. World Scientific.
https://doi.org/10.1142/1700
[28]  Finkelstein, R.J. (2015) The SLq(2) Extension of the Standard Model. International Journal of Modern Physics A, 30, Article ID: 1530037.
https://doi.org/10.1142/s0217751x15300379
[29]  Robson, B.A. (2024) The Generation Model of Particle Physics. European Journal of Applied Sciences, 12, 1-17.
https://doi.org/10.14738/aivp.123.16922
[30]  Raitio, R. (2018) Supersymmetric Preons and the Standard Model. Nuclear Physics B, 931, 283-290.
https://doi.org/10.1016/j.nuclphysb.2018.04.021
[31]  Fan, X., Myers, T.G., Sukra, B.A.D. and Gabrielse, G. (2023) Measurement of the Electron Magnetic Moment. Physical Review Letters, 130, Article ID: 071801.
https://doi.org/10.1103/physrevlett.130.071801
[32]  Shen, Y.R. and Bloembergen, N. (1965) Theory of Stimulated Brillouin and Raman Scattering. Physical Review, 137, A1787-A1805.
https://doi.org/10.1103/physrev.137.a1787
[33]  Holmes, R. and Flusberg, A. (1988) Rotationally Invariant Theory of Stimulated Raman Scattering. Physical Review A, 37, 1588-1596.
https://doi.org/10.1103/physreva.37.1588
[34]  Workman, R.L., Burkert, V.D., Crede, V., Klempt, E., Thoma, U., Tiator, L., et al. (2022) Review of Particle Physics. “Electroweak Model and Constraints on New Physics”. Progress of Theoretical and Experimental Physics, 2022, 083C01.
https://doi.org/10.1093/ptep/ptac097
[35]  Workman, R.L., Burkert, V.D., Crede, V., Klempt, E., Thoma, U., Tiator, L., et al. (2022) Review of Particle Physics. “Gauge and Higgs Bosons”. Progress of Theoretical and Experimental Physics, 2022, 083C01.
https://doi.org/10.1093/ptep/ptac097
[36]  Sirunyan, A.M., Tumasyan, A., Adam, W., Asilar, E., Bergauer, T., et al. (2017) Search for Light Vector Resonances Decaying to a Quark Pair Produced in Association with a Jet in Proton-Proton Collisions at √s = 13 TeV. CMS PAS EXO-17-001, Figure 7.
https://doi.org/10.48550/arXiv.1710.00159
[37]  Leutwyler, H. (1997) Phonons as Goldstone Bosons. Helvetica Physica Acta, 70, 275-286.
https://doi.org/10.48550/arXiv.hep-ph/9609466
[38]  Workman, R.L., Burkert, V.D., Crede, V., Klempt, E., Thoma, U., Tiator, L., et al. (2022) Review of Particle Physics. “Neutrino Mixing”. Progress of Theoretical and Experimental Physics, 2022, 083C01.
https://doi.org/10.1093/ptep/ptac097
[39]  Holmes, R.B. (2024) Method for Fitting and Deriving the CKM and PMNS Matrices from Underlying Wavefunctions. Journal of Modern Physics, 15, 2407-2421.
https://doi.org/10.4236/jmp.2024.1513099
[40]  Van der Houwen, P.J. and Sommeijer, B.P. (1989) Diagonally Implicit Runge-Kutta-Nyström Methods for Oscillatory Problems. SIAM Journal on Numerical Analysis, 26, 414-429.
https://doi.org/10.1137/0726023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133