全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Part II. How a Tokamak May Allow GW to Be Duplicated in Simulated Values, with Torsion Cosmology and Quantum Number n, and Cosmological Constant from Relic Black Holes

DOI: 10.4236/jhepgc.2025.113048, PP. 737-783

Keywords: Cosmological Constant, Torsion, Spin Density, BEC Scaling of Black Hole Physics, Tokamak, Wavefunction of the Universe, Wormholes

Full-Text   Cite this paper   Add to My Lib

Abstract:

We make more specific initial contributions of prior work w.r.t. Tokamaks, relic black holes, and a relationship between a massive graviton particle count and quantum number n, and also add a great more to contributions of our conclusions w.r.t. the wave function of the universe. Our idea for black hole physics being used for GW generation, is using Torsion to form a cosmological constant. Planck sized black holes allow for a spin density term linked to Torsion. In doing so, we review its similarities to frequency values for GW due to a Tokamak simulation. The conclusion of this document will be in bringing up values for an initial wave function of the Universe and an open question as to the applications of a white hole-black hole wormhole bridge between a prior to the present universe as well as a speculation as to particle count, and a quantum number, n, as specified in our document.

References

[1]  de Sabbata, V. and Sivaram, C. (1991) Torsion, Quantum Effects and the Problem of Cosmological Constant. In: Zichichi, A., de Sabbata, V. and Sánchez, N., Eds., Gravitation and Modern Cosmology, Springer, 19-36.
https://doi.org/10.1007/978-1-4899-0620-5_4

[2]  Beckwith, A.W. (2024) How Torsion as Presented by De Sabbata and Sivaram in Erice 1990 Argument as Modified May Permit Cosmological Constant, and Baseline as to Dark Energy. Journal of High Energy Physics, Gravitation and Cosmology, 10, 138-148.
https://doi.org/10.4236/jhepgc.2024.101012

[3]  Chavanis, P. (2014) Self-Gravitating Bose-Einstein Condensates. In: Calmet, X., Ed., Quantum Aspects of Black Holes, Springer, 151-194.
https://doi.org/10.1007/978-3-319-10852-0_6

[4]  Carlip, S. (2009) Black Hole Thermodynamics and Statistical Mechanics. In: Papantonopoulos, E., Ed., Physics of Black Holes, Springer, 89-123.
https://doi.org/10.1007/978-3-540-88460-6_3

[5]  Corda, C. (2023) Black Hole Spectra from Vaz’s Quantum Gravitational Collapse. arXiv: 2305.02184.
https://arxiv.org/abs/2305.02184

[6]  Casadio, R. and Micu, O. (2024) Quantum Matter Core of Black Holes (and Quantum Hair). In: Malafarina, D. and Joshi, P.S., Eds., New Frontiers in Gravitational Collapse and Spacetime Singularities, Springer, 53-84.
https://doi.org/10.1007/978-981-97-1172-7_2

[7]  Feng, Z., Ling, Y., Wu, X. and Jiang, Q. (2024) New Black-To-White Hole Solutions with Improved Geometry and Energy Conditions. Science China Physics, Mechanics & Astronomy, 67, Article No. 270412.
https://doi.org/10.1007/s11433-023-2373-0

[8]  Ohanian, H.C. and Ruffini, R. (2013) Gravitation and Spacetime. 3rd Edition, Cambridge University Press.
https://doi.org/10.1017/cbo9781139003391

[9]  Will, C. (2015) Was Einstein Right? A Centenary Assessment. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation, A Centennial Perspective, Cambridge University Press, 49-96.
[10]  Weber, J. (2004) General Relativity and Gravitational Waves. Dover Publications.
[11]  Lu, H.Q., Fang, W., Huang, Z.G. and Ji, P.Y. (2008) The Consistent Result of Cosmological Constant from Quantum Cosmology and Inflation with Born-Infeld Scalar Field. The European Physical Journal C, 55, 329-335.
https://doi.org/10.1140/epjc/s10052-008-0564-z

[12]  Sarkar, U. (2008) Particle and Astroparticle Physics. Taylor & Francis Group.
[13]  Hartle, J.B. and Hawking, S.W. (1983) Wave Function of the Universe. Physical Review D, 28, 2960-2975.
https://doi.org/10.1103/physrevd.28.2960

[14]  DeBenedictis, A. and Das, A. (2001) On a General Class of Wormhole Geometries. Classical and Quantum Gravity, 18, 1187-1204.
https://doi.org/10.1088/0264-9381/18/7/304

[15]  Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73-77.
https://doi.org/10.1103/physrev.48.73

[16]  Visser, M. (2002) The Quantum Physics of Chronology Protection. arXiv: gr-qc/0204022.
https://arxiv.org/abs/gr-qc/0204022

[17]  Lightman, A., Press, W., Price, R. and Teukolsky, S. (1975) Problem Book in Relativity and Gravitation. Princeton University Press.
[18]  McCracken, D.D. and Dorn, W.S. (1977) Numerical Methods and FORTRAN Programming with Application in Engineering and Science. Mir Publisher, 584.
[19]  Davis, P.J. and Rabinowitz, P. (2007) Methods of Numerical Integration. 2nd Edition, Dover Publishers.
[20]  Zwillinger, D. (2003) CRC Standard Mathematical Tables and Formulae. 31st Edition, Chapman and Hall/CRC.
[21]  Kieffer, K. (2012) Quantum Gravity. 3rd Edition, Ox-ford University Press.
[22]  Martín-Moruno, P. and González-Díaz, P.F. (2011) Thermal Radiation from Lorentzian Traversable Wormholes. Journal of Physics: Conference Series, 314, Article ID: 012037.
https://doi.org/10.1088/1742-6596/314/1/012037

[23]  Gecim, G. and Sucu, Y. (2020) Quantum Gravity Correction to Hawking Radiation of the 2 + 1-Dimensional Wormhole. Advances in High Energy Physics, 2020, Article ID: 7516789.
https://doi.org/10.1155/2020/7516789

[24]  Cheung, K. (2002) Black Hole Production and Large Extra Dimensions. Physical Review Letters, 88, Article ID: 221602.
https://doi.org/10.1103/physrevlett.88.221602

[25]  Li, F., Wen, H., Fang, Z., Li, D. and Zhang, T. (2020) Electromagnetic Response to High-Frequency Gravitational Waves Having Additional Polarization States: Distinguishing and Probing Tensor-Mode, Vector-Mode and Scalar-Mode Gravitons. The European Physical Journal C, 80, Article No. 879.
https://doi.org/10.1140/epjc/s10052-020-08429-2

[26]  Carr, B.J. (2005) Primordial Black Holes-Recent Developments. arXiv: astro-ph/ 0504034.
https://arxiv.org/abs/astro-ph/0504034

[27]  Grishchuk, L.P. and Sazchin, M.V. (1975) Excitation and Detection of Standing Gravitational Waves. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 68, 1569-1582.
[28]  Li, F., Tang, M., Luo, J. and Li, Y. (2000) Electrodynamical Response of a High-Energy Photon Flux to a Gravitational Wave. Physical Review D, 62, Article ID: 044018.
https://doi.org/10.1103/physrevd.62.044018

[29]  Wesson, J. (2011) Tokamaks. 4th Edition, Oxford Science Publications.
[30]  Li, F.Y., Yang, N., Fang, Z.Y., et al. (2009) Signal Photon Flux and Background Noise in a Coupling Electromagnetic Detecting System for High Frequency Gravitational Waves. Physical Review D, 80, Article ID: 064013.
https://doi.org/10.1103/PhysRevD.80.064013
[31]  Woods, R.C., Baker, R.M.L., Li, F.Y., et al. (2011) A New Theoretical Technique for the Measurement of High-Frequency Relic Gravitational Waves. Journal of Modern Physics, 2, 498-518.
https://doi.org/10.4236/jmp.2011.26060
[32]  Li, J., et al. (2013) A Long Pulse High Confinement Plasma Regime in the Experimental Advanced Super Conducting Tokamak. Nature Physics, 9, 817-821.
[33]  Wen, H., Li, F. and Fang, Z. (2014) Electromagnetic Response Produced by Interaction of High-Frequency Gravitational Waves from Braneworld with Galactic-Extragalactic Magnetic Fields. Physical Review D, 89, Article ID: 104025.
https://doi.org/10.1103/physrevd.89.104025

[34]  Beckwith, A.W. (2017) Part 2: Review of Tokamak Physics as a Way to Construct a Device Optimal for Graviton Detection and Generation within a Confined Small Spatial Volume, as Opposed to Dyson’s “Infinite Astrophysical Volume” Calculations. Journal of High Energy Physics, Gravitation and Cosmology, 3, 138-155.
https://doi.org/10.4236/jhepgc.2017.31015

[35]  Chongchitnan, S. (2016) Inflation Model Building with an Accurate Measure of E-Folding. arXiv: 1605.04871.
https://arxiv.org/pdf/1605.04871.pdf

[36]  Cornish, N. and Robson, T. (2017) Galactic Binary Science with the New LISA Design. Journal of Physics: Conference Series, 840, Article ID: 012024.
https://doi.org/10.1088/1742-6596/840/1/012024

[37]  Danzmann, K. (2013) The Gravitational Universe. arXiv: 1305.5720.
[38]  Barrow, J.D. (2022) The Constants of Nature, from α to ω—The Numbers That Encode the Deepest Secrets of the Universe. Pantheon Books.
[39]  Freese, K., Brown, M.G. and Kinney, W.H. (2011) The Phantom Bounce: A New Proposal for an Oscillating Cosmology. In: Mersini-Houghton, L. and Vaas, R., Eds., The Arrows of Time, Springer, 149-156.
https://doi.org/10.1007/978-3-642-23259-6_7
[40]  Maggiore, M. (2008) Gravitational Waves, Volume 1, Theory and Experiment. Ox-ford University Press.
[41]  Dhurandhar, S. and Mitra, S. (2022) General Relativity and Gravitational Waves: Essentials of Theory and Practice (UNITEXT for Physics). SPRINGER.
[42]  Will, C.M. (2014) The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 17, Article No. 4.
https://doi.org/10.12942/lrr-2014-4
[43]  Nye, L. (2024) Complexity Considerations in the Heisenberg Uncertainty Principle. Journal of High Energy Physics, Gravitation and Cosmology, 10, 1470-1513.
https://doi.org/10.4236/jhepgc.2024.104083
[44]  Padmanabhan, T. (2006) An Invitation to Astrophysics. World Scientific.
https://doi.org/10.1142/6010

[45]  Downes, T.G. and Milburn, G.J. (2011) Optimal Quantum Estimation for Gravitation. arXiv: 1108.5220
[46]  Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130.
https://doi.org/10.1139/p86-019

[47]  Carney, D., Stamp, P.C.E. and Taylor, J.M. (2019) Tabletop Experiments for Quantum Gravity: A User’s Manual. Classical and Quantum Gravity, 36, Article ID: 034001.
https://doi.org/10.1088/1361-6382/aaf9ca

[48]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Scientific.
https://doi.org/10.1142/6730

[49]  Beckwith, A. (2022) New Conservation Law as to Hubble Parameter, Squared Divided by Time Derivative of Inflation in Early and Late Universe, Compared with Discussion of HUP in Pre Planckian to Planckian Physics, and Relevance of Fifth Force Analysis to Gravitons and GW. In: Frajuca, C., Ed., Gravitational WavesTheory and Observations, IntechOpen, 1-18.
https://www.intechopen.com/online-first/1125889

[50]  Casadio, R. and Giusti, A. (2021) Classicalizing Gravity. In: Saridakis, E.N., et al., Eds., Modified Gravity and Cosmology, Springer, 405-418.
https://doi.org/10.1007/978-3-030-83715-0_27

[51]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman, 875-877.
[52]  Mohanty, S. (2020) Astroparticle physics and Cosmology, Perspectives in the Multi-Messenger Era. Springer.
[53]  Beckwith, A.W. (2020) Using “enhanced Quantization” to Bound the Cosmological Constant, (for a Bound-On Graviton Mass), by Comparing Two Action Integrals (one Being from General Relativity) at the Start of Inflation. In: Sidharth, B.G., Murillo, J.C., Michelini, M. and Perea, C., Eds., Fundamental Physics and Physics Education Research, Springer, 21-35.
https://doi.org/10.1007/978-3-030-52923-9_3

[54]  Penrose, R. (2006) Before the Big Bang: An Outrageous New Perspective and Its Implications for Particle Physics. Proceedings of the EPAC 2006, Edinburgh, 26-30 Jun 2006, 2759-2762
[55]  Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461.
https://doi.org/10.3390/e10040441

[56]  Popławski, N.J. (2011) Cosmological Constant from Quarks and Torsion. Annalen der Physik, 523, 291-295.
https://doi.org/10.1002/andp.201000162

[57]  Halmos (1956) Lectures on Ergodic Theory. Publications of the Mathematical Society of Japan, Vol. 3, Mathematical Society of Japan, MR 0097489.
[58]  Arnold, V.I. and Avez, A. (1968) Ergodic Problems of Classical Mechanics. W. A. Benjamin, Inc.
[59]  Sarig, O. (2020) Lecture Notes on Ergodic Theory.
http://www.weizmann.ac.il/math/sarigo/sites/math.sarigo/files/uploads/ergodicnotes.pdf

[60]  Urban, F.R. and Zhitnitsky, A.R. (2010) The Cosmological Constant from the QCD Veneziano Ghost. Physics Letters B, 688, 9-12.
https://doi.org/10.1016/j.physletb.2010.03.080

[61]  Kolb, E. and Turner, M. (1990) The Early Universe. Addison-Wesley Publishing Company.
[62]  Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Nonlinear Electrodynamics. Physical Review D, 69, Article ID: 123504.
https://doi.org/10.1103/physrevd.69.123504

[63]  Maggiorie, M. (2008) Gravitational Waves, Volume 1, Theory and Experiment. Oxford University Press.
[64]  Landau, L.D. and Lifshitz, E.M. (1975) Classical Theory of Fields. Pergamon
[65]  Rosen, N. (1993) Quantum Mechanics of a Miniuniverse. International Journal of Theoretical Physics, 32, 1435-1440.
https://doi.org/10.1007/bf00675204

[66]  Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press.
[67]  Roy, D.K. (1993) A Quantum Measurement Approach to Tunneling. World Scientific Press.
[68]  Vasileiou, V., Granot, J., Piran, T. and Amelino-Camelia, G. (2015) A Planck-Scale Limit on Spacetime Fuzziness and Stochastic Lorentz Invariance Violation. Nature Physics, 11, 344-346.
https://doi.org/10.1038/nphys3270

[69]  Perlman, E.S., Rappaport, S.A., Christiansen, W.A., Ng, Y.J., DeVore, J. and Pooley, D. (2015) New Constraints on Quantum Gravity from X-Ray and Gamma-Ray Observations. The Astrophysical Journal, 805, Article 10.
https://doi.org/10.1088/0004-637x/805/1/10

[70]  Kim, K., Im, K., Kim, H.C., Oh, S., Park, J.S., Kwon, S., et al. (2015) Design Concept of K-DEMO for Near-Term Implementation. Nuclear Fusion, 55, Article ID: 053027.
https://doi.org/10.1088/0029-5515/55/5/053027

[71]  Di Marco, A., Orazi, E. and Pradisi, G. (2024) Introduction to the Number of E-Folds in Slow-Roll Inflation. Universe, 10, Article 284.
https://doi.org/10.3390/universe10070284

[72]  Li, X., Wang, S. and Wen, H. (2016) Signal Photon Flux Generated by High-Frequency Relic Gravitational Waves. Chinese Physics C, 40, Article ID: 085101.
https://doi.org/10.1088/1674-1137/40/8/085101

[73]  Seahra, S.S. (2006) Gravitational Waves and Cosmological Braneworlds: A Characteristic Evolution Scheme. Physical Review D, 74, Article ID: 044010.
https://doi.org/10.1103/physrevd.74.044010

[74]  Ringström, H. (2013) The Topology of the Universe. In: Ringström, H., Ed., On the Topology and Future Stability of the Universe, Oxford University Press, 30-43.
https://doi.org/10.1093/acprof:oso/9780199680290.003.0003

[75]  Beyer, W. (1990) CRC Standard Mathematical Tables. 28th Edition, CRC Press.
[76]  Pascale, M., Frye, B.L., Pierel, J.D.R., Chen, W., Kelly, P.L., Cohen, S.H., et al. (2025) SN H0pe: The First Measurement of h 0 from a Multiply Imaged Type IA Supernova, Discovered by JWST. The Astrophysical Journal, 979, Article 13.
https://doi.org/10.3847/1538-4357/ad9928

[77]  Barbour, J. (2010) Shape Dynamics: An Introduction. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Springer, 257-297.
[78]  Beckwith, A. (2015) Gedankenexperiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwartzshield Geometry and Planckian Space-Time with Initial Non Zero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to. viXra: 1509.0173.
http://vixra.org/abs/1509.0173

[79]  Beckwith, A. (2015) NLED Gedankenexperiment for Initial Temperature, Particle Count, and Entropy Affected by Initial Degrees of Freedom in Early Universe Cosmology, with Two Cases, One Where δ T Times δ E = Hba, and Another When It Doesn’t (Increases Initial Entropy).
http://vixra.org/abs/1510.0363

[80]  Brunstein, R., Gasperni, M., Giovannini, M. and Veneziano, G. (1995) Relic Gravitational Waves from String Cosmology. Physics Letters B, 361, 45-51.
https://doi.org/10.1016/0370-2693(95)01128-D
[81]  Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461.
https://doi.org/10.3390/e10040441

[82]  de Vega, H.J. (2009) Inflation in the Standard Model of the Universe. LPTHE, CNRS/Université Paris VI ISAPP 2009, Centro Alessandro Volta.
[83]  Veneziano, G. (1993) Classical and Quantum Gravity from String Theory. In: Bento, M.C., Bertolami, O., Mourao, J.M. and Picken, R.F., Eds., Classical and Quantum Gravity, World Scientific Press, 134-180.
[84]  Glauber, R.J. (1963) Coherent and Incoherent States of the Radiation Field. Physical Review, 131, 2766-2788.
https://doi.org/10.1103/physrev.131.2766

[85]  Mohaupt, T. (2003) Introduction to String Theory. In: Giulini, D.J.W., Kiefer, C. and Lämmerzahl, C., Eds., Quantum Gravity, Springer, 173-251.
https://doi.org/10.1007/978-3-540-45230-0_5

[86]  Ford, L.H. (1994) Gravitons and Lightcone Fluctuations. arXiv: gr-qc/9410047.
http://arxiv.org/abs/gr-qc/9410047

[87]  Venkataratnam, K.K. and Suresh, P.K. (2008) Density Fluctuations in the Oscillatory Phase of a Nonclassical Inflaton in the FRW Universe. International Journal of Modern Physics D, 17, 1991-2005.
https://doi.org/10.1142/s0218271808013662

[88]  Grishchuk, L.P. and Sidorov, Y.V. (1989) On the Quantum State of Relic Gravitons. Classical and Quantum Gravity, 6, L161-L166.
https://doi.org/10.1088/0264-9381/6/9/002

[89]  Grishchuk, L.P. (1993) Quantum Effects in Cosmology. Classical and Quantum Gravity, 10, 2449-2477.
https://doi.org/10.1088/0264-9381/10/12/006

[90]  Grishchuk, L. (1998) The Detectability of Relic (Squeezed) Gravitational Waves by Laser Interferometers. arXiv: gr-qc/9810055.
http://arxiv.org/abs/gr-qc/9810055

[91]  Grishchuk, L. (2008) Discovering Relic Gravitational Waves in Cosmic Microwave Back-ground Radiation. arXiv: 0707.3319.
http://arxiv.org/abs/0707.3319

[92]  Belinski, V. and Verdaguer, E. (2001) Gravitational Solitons. Cambridge University Press.
https://doi.org/10.1017/cbo9780511535253

[93]  Bojowald, M. (2008) Quantum Nature of Cosmological Bounces. General Relativity and Gravitation, 40, 2659-2683.
https://doi.org/10.1007/s10714-008-0645-1

[94]  Barbour, J. (2009) The Nature of Time. arXiv: 0903.3489v1.
http://arxiv.org/pdf/0903.3489.pdf

[95]  Goldhaber, A.S. and Nieto, M.M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979.
https://doi.org/10.1103/revmodphys.82.939

[96]  Handley, W.J., Brechet, S.D., Lasenby, A.N. and Hobson, M.P. (2014) Kinetic Initial Conditions for Inflation. arXiv: 1401.2253v2.
http://arxiv.org/pdf/1401.2253v2.pdf

[97]  Corda, C. (2012) Primordial Gravity’s Breath. Electronic Journal of Theoretical Physics, 9, 1-10.
http://arxiv.org/abs/1110.1772

[98]  Gielen, S. and Oriti, D. (2012) Discrete and Continuum Third Quantization of Gravity. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Springer, 41-64.
https://doi.org/10.1007/978-3-0348-0043-3_4

[99]  Birrell, N.D. and Davies, P.C.W. (1982) Quantum Fields in Curved Space. Cambridge University Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133