全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Natural Radioactivity in Phosphogypsum by Gamma Spectrometry and Evaluation of Radiological Risk Parameters Associated with Phosphogypsum Storage in Senegal

DOI: 10.4236/wjnst.2025.153007, PP. 80-96

Keywords: Natural Radioactivity, Gamma Spectrometry, Phosphogypsum, Activity Concentrations, Dose Parameters, Radiological Risks

Full-Text   Cite this paper   Add to My Lib

Abstract:

The HPGe gamma spectrometer was used to measure the concentrations of the natural radionuclides 226Ra, 232Th, and 40K in eight samples of phosphogypsum, in order to assess the health risk indices associated with radiation and the excess lifetime cancer risk (ELCR). The 226Ra, 232Th, and 40K were discovered with activity concentrations of 586.26 ± 129.91, 4.05 ± 1.47, and 12.22 ± 6.75, respectively. The average values of the estimated radiological risk parameters were 592.99 ± 141.06 Bq·kg?1 for radium equivalent (Raeq), 273.81 nGy·h?1 for the external absorbed dose rate (Dext), and 544.81 nGy·h?1 for the internal absorbed dose rate (Dint). The average annual effective dose (AEDE) was 335799.36 nSv·y?1 for the external effective dose (AEDEext) and 2672601.09 nSv·y?1 for the internal effective dose (AEDEint). The annual dose equivalent to the gonads (AGED) was 1832.32 μSv. The average cancer risk rate (ELCR) was 10.22 × 10?3. With the External Risk Index (Hext), the Internal Risk Index (Hint), the Representative Gamma Index (Iγ), and the Alpha Index Iα, the average risk indices were 1.60; 3.19; 1.98; and 2.93. According to this study, the average values of radiological risk parameters for all examined samples exceed the internationally recommended thresholds.

References

[1]  Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe, J.C. and Benmansour, M. (2001) Natural Radioactivity in Phosphates, Phosphogypsum and Natural Waters in Morocco. Journal of Environmental Radioactivity, 54, 231-242.
https://doi.org/10.1016/s0265-931x(00)00153-3
[2]  Fávaro, D.I.T. (2005) Natural Radioactivity in Phosphate Rock, Phosphogypsum and Phosphate Fertilizers in Brazil. Journal of Radioanalytical and Nuclear Chemistry, 264, 445-448.
https://doi.org/10.1007/s10967-005-0735-4
[3]  El-Bahi, S.M., Sroor, A., Mohamed, G.Y. and El-Gendy, N.S. (2017) Radiological Impact of Natural Radioactivity in Egyptian Phosphate Rocks, Phosphogypsum and Phosphate Fertilizers. Applied Radiation and Isotopes, 123, 121-127.
https://doi.org/10.1016/j.apradiso.2017.02.031
[4]  Tayibi, H., Gascó, C., Navarro, N., López-Delgado, A., Choura, M., Alguacil, F.J., et al. (2011) Radiochemical Characterization of Phosphogypsum for Engineering Use. Journal of Environmental Protection, 2, 168-174.
https://doi.org/10.4236/jep.2011.22019
[5]  Ndour, O., Thiandoume, C., Traore, A., Cagnat, X., Diouf, P.M., Ndeye, M., et al. (2021) Determination of Natural Radionuclides in Phosphogypsum Samples from Phosphoric Acid Production Industry in Senegal. Environmental Forensics, 24, 197-204.
https://doi.org/10.1080/15275922.2021.2006362
[6]  Moutaouakil, A., Pineau, J.L. and Lahlou, K. (2003) La recherche d’un procédé viable de valorisation d’un phosphogypse provenant de l’industrie phosphatière marocaine. Environnement, Ingénierie & Développement, 29, 31-35.
https://doi.org/10.4267/dechets-sciences-techniques.2231
[7]  Alcordo, I.S. and Rechcigl, J.E. (1993) Phosphogypsum in Agriculture: A Review. In: Advances in Agronomy, Elsevier, 55-118.
https://doi.org/10.1016/s0065-2113(08)60793-2
[8]  Saadaoui, E., Ghazel, N., Ben Romdhane, C. and Massoudi, N. (2017) Phosphogypsum: Potential Uses and Problems—A Review. International Journal of Environmental Studies, 74, 558-567.
https://doi.org/10.1080/00207233.2017.1330582
[9]  Gezer, F., Turhan, Ş., Uğur, F.A., Gören, E., Kurt, M.Z. and Ufuktepe, Y. (2012) Natural Radionuclide Content of Disposed Phosphogypsum as TENORM Produced from Phosphorus Fertilizer Industry in Turkey. Annals of Nuclear Energy, 50, 33-37.
https://doi.org/10.1016/j.anucene.2012.07.018
[10]  Mazzilli, B., Palmiro, V., Saueia, C. and Nisti, M.B. (2000) Radiochemical Characterization of Brazilian Phosphogypsum. Journal of Environmental Radioactivity, 49, 113-122.
https://doi.org/10.1016/s0265-931x(99)00097-1
[11]  Reguigui, R., Sfar Felfoul, H., Ben Ouezdou, M. and Clastres, P. (2005) Radionuclide Levels and Temporal Variation in Phosphogypsum. Journal of Radioanalytical and Nuclear Chemistry, 264, 719-722.
https://doi.org/10.1007/s10967-005-0778-6
[12]  Khan, H.M., Chaudhry, Z.S., Ismail, M. and Khan, K. (2010) Assessment of Radionuclides, Trace Metals and Radionuclide Transfer from Soil to Food of Jhangar Valley (Pakistan) Using Gamma-Ray Spectrometry. Water, Air, & Soil Pollution, 213, 353-362.
https://doi.org/10.1007/s11270-010-0390-4
[13]  Beretka, J. and Mathew, P.J. (1985) Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Physics, 48, 87-95.
https://doi.org/10.1097/00004032-198501000-00007
[14]  Rahman, S.U., Matiullah, Malik, F., Rafique, M., Anwar, J., Ziafat, M., et al. (2010) Measurement of Naturally Occurring/Fallout Radioactive Elements and Assessment of Annual Effective Dose in Soil Samples Collected from Four Districts of the Punjab Province, Pakistan. Journal of Radioanalytical and Nuclear Chemistry, 287, 647-655.
https://doi.org/10.1007/s10967-010-0819-7
[15]  Qureshi, A.A., Tariq, S., Din, K.U., Manzoor, S., Calligaris, C. and Waheed, A. (2014) Evaluation of Excessive Lifetime Cancer Risk Due to Natural Radioactivity in the Rivers Sediments of Northern Pakistan. Journal of Radiation Research and Applied Sciences, 7, 438-447.
https://doi.org/10.1016/j.jrras.2014.07.008
[16]  Attallah, M.F., Metwally, S.S., Moussa, S.I. and Soliman, M.A. (2019) Environmental Impact Assessment of Phosphate Fertilizers and Phosphogypsum Waste: Elemental and Radiological Effects. Microchemical Journal, 146, 789-797.
https://doi.org/10.1016/j.microc.2019.02.001
[17]  Joel, E.S., Maxwell, O., Adewoyin, O.O., Ehi-Eromosele, C.O., Embong, Z. and Saeed, M.A. (2018) Assessment of Natural Radionuclides and Its Radiological Hazards from Tiles Made in Nigeria. Radiation Physics and Chemistry, 144, 43-47.
https://doi.org/10.1016/j.radphyschem.2017.11.003
[18]  Alhous, S.F., Kadhim, S.A., Alkufi, A.A. and Kadhim, B.A. (2020) Measuring the Level of Radioactive Contamination of Selected Samples of Sugar and Salt Available in the Local Markets in Najaf Governorate/Iraq. IOP Conference Series: Materials Science and Engineering, 928, Article ID: 072097.
https://doi.org/10.1088/1757-899x/928/7/072097
[19]  Song, M.H., Chang, B.U., Koh, S.M., Kim, Y.J., Kim, D.J. and Kim, G.H. (2011) Overall Natural Radioactivity of a Phosphate Fertilizer Industry in Korea. Radioprotection, 46, S113-S118.
https://doi.org/10.1051/radiopro/20116835s
[20]  Dueñas, C., Fernández, M.C., Cañete, S. and Pérez, M. (2010) Radiological Impacts of Natural Radioactivity from Phosphogypsum Piles in Huelva (Spain). Radiation Measurements, 45, 242-246.
https://doi.org/10.1016/j.radmeas.2010.01.007
[21]  Al-Jundi, J., Al-Ahmad, N., Shehadeh, H., Afaneh, F., Maghrabi, M., Gerstmann, U., et al. (2008) Investigations on the Activity Concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan Phosphogypsum and Fertilizers. Radiation Protection Dosimetry, 131, 449-454.
https://doi.org/10.1093/rpd/ncn214
[22]  Korany, K.A., Masoud, A.M., Rushdy, O.E., Alrowaili, Z.A., Hassanein, F.H. and Taha, M.H. (2021) Phosphate, Phosphoric Acid and Phosphogypsum Natural Radioactivity and Radiological Hazards Parameters. Journal of Radioanalytical and Nuclear Chemistry, 329, 391-399.
https://doi.org/10.1007/s10967-021-07796-8
[23]  Jose Madruga, M., Prudencio, M.I., Gil Corisco, J.A., Mihalik, J., Marques, R., Santos, M., et al. (2019) Distribution of Natural Radionuclides, Rare Earth Elements, Metals and Metalloids in a Phosphogypsum Stockpile. International Journal of Waste Resources, 9, Article No. 363.
https://doi.org/10.35248/2252-5211.19.9.363
[24]  Ajam, L., Ben Ouezdou, M., Felfoul, H.S. and Mensi, R.E. (2009) Characterization of the Tunisian Phosphogypsum and Its Valorization in Clay Bricks. Construction and Building Materials, 23, 3240-3247.
https://doi.org/10.1016/j.conbuildmat.2009.05.009
[25]  United Nations (2008) UNSCEAR 2008 Report on Sources and Effects of Ionizing Radiation. Vol. 1.
https://doi.org/10.18356/a02938bf-en
[26]  Abdullahi, S., Ismail, A.F. and Samat, S. (2019) Determination of Indoor Doses and Excess Lifetime Cancer Risks Caused by Building Materials Containing Natural Radionuclides in Malaysia. Nuclear Engineering and Technology, 51, 325-336.
https://doi.org/10.1016/j.net.2018.09.017
[27]  Kolo, M.T., Aziz, S.A.B.A., Khandaker, M.U., Asaduzzaman, K. and Amin, Y.M. (2015) Evaluation of Radiological Risks Due to Natural Radioactivity around Lynas Advanced Material Plant Environment, Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 22, 13127-13136.
https://doi.org/10.1007/s11356-015-4577-5
[28]  Imani, M., Adelikhah, M., Shahrokhi, A., Azimpour, G., Yadollahi, A., Kocsis, E., et al. (2021) Natural Radioactivity and Radiological Risks of Common Building Materials Used in Semnan Province Dwellings, Iran. Environmental Science and Pollution Research, 28, 41492-41503.
https://doi.org/10.1007/s11356-021-13469-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133