全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Link between Stopping Time and Non-Trivial Cycles in the Collatz Problem

DOI: 10.4236/apm.2025.156018, PP. 351-389

Keywords: Collatz Problem, Stopping Time, Coefficient Stopping Time, Non-Trivial Cycles, Garner’s Main Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Collatz Conjecture asserts that for all positive integers s , every Syracuse integer sequence defined by T( s )=s/2 if s is even, and T( s )= ( 3s+1 )/2 otherwise, eventually reaches 1 after a finite number of iterations. The stopping time of an integer is the smallest number of iterations required for the sequence to fall below its starting value, while the total stopping time measures the iterations needed to reach 1. In this paper, we revisit the notion of stopping time by introducing the coefficient stopping time, defined as the smallest value of n such that the coefficient of s in T n ( s ) , expressed as 3 r / 2 n , is less than 1. Building on foundational results by Lynn E. Garner (1981), we leverage recent computational results by David Barina to extend Garner’s estimation regarding the minimal length of non-trivial cycles. Specifically, we demonstrate the non-existence of non-trivial cycles of length n<19478780533 , thus improving upon the previous result by Shalom Eliahou (2021). We subsequently show that this result can be generalized to all integers n . We also introduce new properties concerning the behavior of Syracuse sequences modulo 2 n , which play a central role in our approach.

References

[1]  Garner, L.E. (1981) On the Collatz 3n + 1 Algorithm. Proceedings of the American Mathematical Society, 82, 19-22.
https://doi.org/10.2307/2044308
[2]  Winkler, M. (2017) New Results on the Stopping Time Behaviour of the Collatz 3x+1 Function. arXiv: 1504.00212.
https://arxiv.org/abs/1504.00212
[3]  Barina, D. (2020) Convergence Verification of the Collatz Problem. The Journal of Supercomputing, 77, 2681-2688.
https://doi.org/10.1007/s11227-020-03368-x
[4]  e Silva, T. (1999) Maximum Excursion and Stopping Time Record-Holders for the Problem: Computational Results. Mathematics of Computation, 68, 371-384.
https://doi.org/10.1090/s0025-5718-99-01031-5
[5]  Eliahou, S. (2011) Le problème 3n+1: Y a-t-il des cycles non triviaux?
https://images-des-maths.pages.math.cnrs.fr/freeze/Le-probleme-3n-1-y-a-t-il-des-cycles-non-triviaux-III.html
[6]  Lagarias, J.C. (2011) The Ultimate Challenge: The 3x + 1 Problem. American Mathematical Society.
[7]  Terras, R. (1976) A Stopping Time Problem on the Positive Integers. Acta Arithmetica, 30, 241-252.
https://doi.org/10.4064/aa-30-3-241-252
[8]  Allouche, J.P. (1978) Sur la conjecture de ‘Syracuse-kakutani-collatz’. Séminaire de Théorie des Nombres de Bordeaux, 8, 1-16.
http://eudml.org/doc/182044
[9]  Korec, Y. (1994) A Density Estimate for the 3x+1 Problem. Mathematica Slovaca, 44, 85-89.
http://eudml.org/doc/32414
[10]  Tao, T. (2011) The Collatz Conjecture, Littlewood-Oxford Theory and Powers of 2 and 3.
https://terrytao.wordpress.com/2011/08/25/the-collatz-conjecture-littlewood-offord-theory-and-powers-of-2-and-3/

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133