全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrepancies between Limits and Measurements of Warm Dark Matter Properties

DOI: 10.4236/ijaa.2025.152005, PP. 65-79

Keywords: Warm Dark Matter, Galaxy, Galaxy Formation, Dwarf Galaxies

Full-Text   Cite this paper   Add to My Lib

Abstract:

A limit on the expansion parameter a hNR at which dark matter becomes non-relativistic has been obtained from the observed minimum halo mass hosting Milky Way satellites. This limit is in disagreement with measurements. In the present study, we attempt to understand this disagreement. We find that the limit does not include the following phenomena: non-linear regeneration of the power spectrum of density perturbations, and the stripping of galaxy halos by neighboring galaxies. Considering these phenomena, we find that there is no longer a significant discrepancy between the limit and the measurements.

References

[1]  Navas, S., et al. (Particle Data Group) (2024) Review of Particle Physics. Physical Review D, 110, Article 030001.
[2]  Lin, W., Chen, X., Ganjoo, H., Hou, L. and Mack, K.J. (2023) Cosmology of Single Species Hidden Dark Matter. arxiv:2305.08943.
[3]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[4]  Hoeneisen, B. (2024) Measurements of the Dark Matter Mass, Temperature and Spin. International Journal of Astronomy and Astrophysics, 14, 184-202.
https://doi.org/10.4236/ijaa.2024.143012
[5]  Lin, W. and Ishak, M. (2016) Ultra Faint Dwarf Galaxies: An Arena for Testing Dark Matter versus Modified Gravity. Journal of Cosmology and Astroparticle Physics, 10, Article 025.
https://doi.org/10.1088/1475-7516/2016/10/025
[6]  Nadler, E.O., Gluscevic, V., Boddy, K.K. and Wechsler, R.H. (2019) Constraints on Dark Matter Microphysics from the Milky Way Satellite Population. The Astrophysical Journal Letters, 878, L32.
https://doi.org/10.3847/2041-8213/ab1eb2
[7]  Ludlow, A.D., Bose, S., Angulo, R.E., Wang, L., Hellwing, W.A., Navarro, J.F., et al. (2016) The Mass-Concentration-Redshift Relation of Cold and Warm Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 460, 1214-1232.
https://doi.org/10.1093/mnras/stw1046
[8]  Benson, A.J., Farahi, A., Cole, S., Moustakas, L.A., Jenkins, A., Lovell, M., et al. (2013) Dark Matter Halo Merger Histories Beyond Cold Dark Matter-I. Methods and Application to Warm Dark Matter. Monthly Notices of the Royal Astronomical Society, 428, 1774-1789.
https://doi.org/10.1093/mnras/sts159
[9]  Avila‐Reese, V., Colin, P., Valenzuela, O., D’Onghia, E. and Firmani, C. (2001) Formation and Structure of Halos in a Warm Dark Matter Cosmology. The Astrophysical Journal, 559, 516-530.
https://doi.org/10.1086/322411
[10]  Macciò, A.V., Ruchayskiy, O., Boyarsky, A. and Muñoz-Cuartas, J.C. (2012) The Inner Structure of Haloes in Cold + Warm Dark Matter Models. Monthly Notices of the Royal Astronomical Society, 428, 882-890.
https://doi.org/10.1093/mnras/sts078
[11]  Gilman, D., Birrer, S., Nierenberg, A., Treu, T., Du, X. and Benson, A. (2020) Warm Dark Matter Chills out: Constraints on the Halo Mass Function and the Free-Streaming Length of Dark Matter with Eight Quadruple-Image Strong Gravitational Lenses. Monthly Notices of the Royal Astronomical Society, 491, 6077-6101.
https://doi.org/10.1093/mnras/stz3480
[12]  Nadler, E.O., Mao, Y., Green, G.M. and Wechsler, R.H. (2019) Modeling the Connection between Subhalos and Satellites in Milky Way-Like Systems. The Astrophysical Journal, 873, Article 34.
https://doi.org/10.3847/1538-4357/ab040e
[13]  Jethwa, P., Erkal, D. and Belokurov, V. (2018) The Upper Bound on the Lowest Mass Halo. Monthly Notices of the Royal Astronomical Society, 473, 2060-2083.
https://doi.org/10.1093/mnras/stx2330
[14]  Weinberg, S. (2008) Cosmology. Oxford University Press.
[15]  Hoeneisen, B. (2023) Understanding the Formation of Galaxies with Warm Dark Matter. Journal of Modern Physics, 14, 1741-1754.
https://doi.org/10.4236/jmp.2023.1413103
[16]  Hoeneisen, B. (2025) Why Do Galaxies Have Extended Flat Rotation Curves? International Journal of Astronomy and Astrophysics, 15, 1-10.
https://doi.org/10.4236/ijaa.2025.151001
[17]  Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S. and Riotto, A. (2005) Constraining Warm Dark Matter Candidates Including Sterile Neutrinos and Light Gravitinos with WMAP and the Lyman-α Forest. Physical Review D, 71, Article 063534.
https://doi.org/10.1103/physrevd.71.063534
[18]  Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) Dark Matter Transfer Function: Free Streaming, Particle Statistics, and Memory of Gravitational Clustering. Physical Review D, 78, Article 063546.
https://doi.org/10.1103/physrevd.78.063546
[19]  Piattella, O.F., Rodrigues, D.C., Fabris, J.C. and de Freitas Pacheco, J.A. (2013) Evolution of the Phase-Space Density and the Jeans Scale for Dark Matter Derived from the Vlasov-Einstein Equation. Journal of Cosmology and Astroparticle Physics, 11, Article 002.
https://doi.org/10.1088/1475-7516/2013/11/002
[20]  Mistele, T., McGaugh, S., Lelli, F., Schombert, J. and Li, P. (2024) Radial Acceleration Relation of Galaxies with Joint Kinematic and Weak-Lensing Data. Journal of Cosmology and Astroparticle Physics, 4, Article 020.
https://doi.org/10.1088/1475-7516/2024/04/020
[21]  Munshi, F., Brooks, A.M., Applebaum, E., Christensen, C.R., Quinn, T. and Sligh, S. (2021) Quantifying Scatter in Galaxy Formation at the Lowest Masses. The Astrophysical Journal, 923, Article 35.
https://doi.org/10.3847/1538-4357/ac0db6
[22]  Press, W.H. and Schechter, P. (1974) Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. The Astrophysical Journal, 187, 425-438.
https://doi.org/10.1086/152650
[23]  Sheth, R.K. and Tormen, G. (1999) Large-Scale Bias and the Peak Background Split. Monthly Notices of the Royal Astronomical Society, 308, 119-126.
https://doi.org/10.1046/j.1365-8711.1999.02692.x
[24]  Sheth, R.K., Mo, H.J. and Tormen, G. (2001) Ellipsoidal Collapse and an Improved Model for the Number and Spatial Distribution of Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 323, 1-12.
https://doi.org/10.1046/j.1365-8711.2001.04006.x
[25]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015
[26]  Hoeneisen, B. (2024) Are James Webb Space Telescope Observations Consistent with Warm Dark Matter? International Journal of Astronomy and Astrophysics, 14, 45-60.
https://doi.org/10.4236/ijaa.2024.141003
[27]  Schneider, A., Smith, R.E., Macci’o, A.V. and Moore, B. (2012) Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models. arxiv:1112.0330.
[28]  MacInnis, A., and Sehgal, N. (2024) CMB-HD as a Probe of Dark Matter on Sub-Galactic Scales. arxiv:2405.12220.
[29]  Despali, G., Moscardini, L., Nelson, D., Pillepich, A., Springel, V. and Vogelsberger, M. (2025) Introducing the AIDA-TNG Project: Galaxy Formation in Alternative Dark Matter Models. Astronomy & Astrophysics, 697, A213.
https://doi.org/10.1051/0004-6361/202553836
[30]  Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015) Structure Formation in Warm Dark Matter Cosmologies Top-Bottom Upside-Down. arxiv:1506.03789.
[31]  Parimbelli, G., Scelfo, G., Giri, S.K., Schneider, A., Archidiacono, M., Camera, S., et al. (2021) Mixed Dark Matter: Matter Power Spectrum and Halo Mass Function. Journal of Cosmology and Astroparticle Physics, 12, Article 044.
https://doi.org/10.1088/1475-7516/2021/12/044
[32]  Liu, B., Shan, H. and Zhang, J. (2024) New Galaxy UV Luminosity Constraints on Warm Dark Matter from JWST. The Astrophysical Journal, 968, Article 79.
https://doi.org/10.3847/1538-4357/ad4ed8
[33]  Lin, H., Gong, Y., Yue, B. and Chen, X. (2024) Implications of the Stellar Mass Density of High-Z Massive Galaxies from JWST on Warm Dark Matter. Research in Astronomy and Astrophysics, 24, Article 015009.
https://doi.org/10.1088/1674-4527/ad0864
[34]  Lapi, A., Ronconi, T., Boco, L., Shankar, F., Krachmalnicoff, N., Baccigalupi, C., et al. (2022) Astroparticle Constraints from Cosmic Reionization and Primordial Galaxy Formation. Universe, 8, Article 476.
https://doi.org/10.3390/universe8090476
[35]  Hoeneisen, B. (2019) Simulations and Measurements of Warm Dark Matter Free-Streaming and Mass. International Journal of Astronomy and Astrophysics, 9, 368-392.
https://doi.org/10.4236/ijaa.2019.94026
[36]  Keating, L.C., Puchwein, E. and Haehnelt, M.G. (2018) Spatial Fluctuations of the Intergalactic Temperature-Density Relation after Hydrogen Reionization. Monthly Notices of the Royal Astronomical Society, 477, 5501-5516.
https://doi.org/10.1093/mnras/sty968

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133