全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Carbon Sources on in Vitro Plant Regeneration in Alfalfa (Medicago sativa L.)

DOI: 10.4236/ajps.2025.166050, PP. 703-723

Keywords: Carbon Sources, Carbohydrate, Plant Regeneration, In Vitro, Alfalfa (Medicago sativa L.)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Carbon sources play a critical role in plant tissue culture. This study evaluates the effects of different carbon sources—including monosaccharide hexoses (fructose, glucose, and galactose), disaccharides (maltose, sucrose, and lactose), and sugar alcohols (mannitol, sorbitol, and glycerol)—at concentrations ranging from 1% - 5% on in vitro plant regeneration in alfalfa (Medicago sativa L.). All leaf explants successfully induced callus formation when cultured on Gamborg’s B5 (B5h) medium supplemented with either monosaccharides or disaccharides in darkness for three weeks. Similarly, somatic embryo induction and maturation were enhanced in media containing monosaccharides (85.4% - 100%) and disaccharides (97.5% - 100%). Among all treatments, maltose at 3% exhibited rapid progression to the globular stage, yielding a 96.9% embryo-to-shoot conversion rate and the lowest incidence of shoot loss. Regenerated plantlets were successfully acclimatized and transferred to soil, achieving survival rates ranging from 50% - 100%, depending on the carbon source. These findings underscore the importance of carbon source selection for optimizing somatic embryogenesis protocols and advancing large-scale micropropagation of alfalfa and related legumes.

References

[1]  Kumar, S. (2011) Biotechnological Advancements in Alfalfa Improvement. Journal of Applied Genetics, 52, 111-124.
https://doi.org/10.1007/s13353-011-0028-2
[2]  Zhang, W., Ding, L., Grimi, N., Jaffrin, M.Y. and Tang, B. (2017) Application of UF-RDM (Ultafiltration Rotating Disk Membrane) Module for Separation and Concentration of Leaf Protein from Alfalfa Juice: Optimization of Operation Conditions. Separation and Purification Technology, 175, 365-375.
https://doi.org/10.1016/j.seppur.2016.11.059
[3]  Nirola, R., Megharaj, M., Beecham, S., Aryal, R., Thavamani, P., Vankateswarlu, K., et al. (2016) Remediation of Metalliferous Mines, Revegetation Challenges and Emerging Prospects in Semi-Arid and Arid Conditions. Environmental Science and Pollution Research, 23, 20131-20150.
https://doi.org/10.1007/s11356-016-7372-z
[4]  Fu, G., Grbic, V., Ma, S. and Tian, L. (2014) Evaluation of Somatic Embryos of Alfalfa for Recombinant Protein Expression. Plant Cell Reports, 34, 211-221.
https://doi.org/10.1007/s00299-014-1700-x
[5]  Tichá, M., Illésová, P., Hrbáčková, M., Basheer, J., Novák, D., Hlaváčková, K., et al. (2020) Tissue Culture, Genetic Transformation, Interaction with Beneficial Microbes, and Modern Bio-Imaging Techniques in Alfalfa Research. Critical Reviews in Biotechnology, 40, 1265-1280.
https://doi.org/10.1080/07388551.2020.1814689
[6]  Sangra, A., Shahin, L. and Dhir, S.K. (2019) Long-Term Maintainable Somatic Embryogenesis System in Alfalfa (Medicago sativa) Using Leaf Explants: Embryogenic Sustainability Approach. Plants, 8, Article 278.
https://doi.org/10.3390/plants8080278
[7]  García, J.L., Troncoso, J., Sarmiento, R. and Troncoso, A. (2002) Influence of Carbon Source and Concentration on the in Vitro Development of Olive Zygotic Embryos and Explants Raised from Them. Plant Cell, Tissue and Organ Culture, 69, 95-100.
https://doi.org/10.1023/a:1015086104389
[8]  Traore, A. and Guiltinan, M.J. (2006) Effects of Carbon Source and Explant Type on Somatic Embryogenesis of Four Cacao Genotypes. HortScience, 41, 753-758.
https://doi.org/10.21273/hortsci.41.3.753
[9]  Yaseen, M., Ahmed, T., Abbasi, N., Ishfaq, A. and Hafiz, A. (2009) In Vitro Shoot Proliferation Competence of Apple Rootstocks M. 9 and M. 26 on Different Carbon Sources. Pakistan Journal of Botany, 41, 1781-1795.
[10]  Sul, I. and Korban, S.S. (1998) Effects of Media, Carbon Sources and Cytokinins on Shoot Organogenesis in the Christmas Tree Scots Pine (Pinus sylvestris L.). The Journal of Horticultural Science and Biotechnology, 73, 822-827.
https://doi.org/10.1080/14620316.1998.11511054
[11]  Hilae, A. and Te-chato, S. (2005) Effects of Carbon Sources and Strength of MS Medium on Germination of Somatic Embryos of Oil Palm (Elaeis quineensis Jacq.). Songklanakarin Journal of Science and Technology, 27, 629-635.
[12]  Navarro‐Alvarez, W., Baenziger, P.S., Eskridge, K.M., Shelton, D.R., Gustafson, V.D. and Hugo, M. (1994) Effect of Sugars in Wheat Anther Culture Media. Plant Breeding, 112, 53-62.
https://doi.org/10.1111/j.1439-0523.1994.tb01276.x
[13]  Verma, D.C. and Dougall, D.K. (1977) Influence of Carbohydrates on Quantitative Aspects of Growth and Embryo Formation in Wild Carrot Suspension Cultures. Plant Physiology, 59, 81-85.
https://doi.org/10.1104/pp.59.1.81
[14]  Gerdakaneh, M., Mozafari, A.A., Khalighi, A. and Sioseh-Mardah, A. (2009) The Effects of Carbohydrate Source and Concentration on Somatic Embryogenesis of Strawberry (Fragaria ananassa Duch.). American-Eurasian Journal of Agricultural and Environmental Science, 6, 76-80.
[15]  Kayim, M. and Koc, N.K. (2006) The Effects of Some Carbohydrates on Growth and Somatic Embryogenesis in Citrus Callus Culture. Scientia Horticulturae, 109, 29-34.
https://doi.org/10.1016/j.scienta.2006.01.040
[16]  Lee, Y.J., Hwang, K.S. and Choi, P.S. (2023) Effect of Carbon Sources on Somatic Embryogenesis and Cotyledon Number Variations in Carrot (Daucus carota L.). Journal of Plant Biotechnology, 50, 89-95.
https://doi.org/10.5010/jpb.2023.50.012.089
[17]  Preethi, D., Sridhar, T.M. and Naidu, C.V. (2011) Carbohydrate Concentration Influences on in Vitro Plant Regeneration in Stevia rebaudiana. Journal of Phytology, 3, 61-64.
[18]  Abou Rayya, M.S., Kassim, N.E. and Ali, E.A.M. (2011) Effect of Different Cyto-Kinins Concentrations and Carbon Sources on Shoot Proliferation of Bitter Almond Nodal Cuttings. Journal of American Science, 6, 135-139.
[19]  Komai, F., Okuse, I., Saga, K. and Harada, T. (1996) Improvement on the Efficiency of Somatic Embryogenesis from Spinach Root Tissues by Applying Various Sugars. Engei Gakkai Zasshi, 65, 67-72.
https://doi.org/10.2503/jjshs.65.67
[20]  Cabasson, C., Ollitrault, P., Côte, F., Michaux-Ferriére, N., Dambier, D., Dalnic, R., et al. (1995) Characteristics of Citrus Cell Cultures during Undifferentiated Growth on Sucrose and Somatic Embryogenesis on Galactose. Physiologia Plantarum, 93, 464-470.
https://doi.org/10.1111/j.1399-3054.1995.tb06844.x
[21]  Strickland, S.G., Nichol, J.W., McCall, C.M. and Stuart, D.A. (1987) Effect of Carbohydrate Source on Alfalfa Somatic Embryogenesis. Plant Science, 48, 113-121.
https://doi.org/10.1016/0168-9452(87)90138-5
[22]  Daigny, G., Paul, H., Sangwan, R.S. and Sangwan-Norreel, B.S. (1996) Factors Influencing Secondary Somatic Embryogenesis in Malus x domestica Borkh. (cv ‘Gloster 69’). Plant Cell Reports, 16, 153-157.
https://doi.org/10.1007/bf01890857
[23]  Loiseau, J., Marche, C. and Le Deunff, Y. (1995) Effects of Auxins, Cytokinins, Carbohydrates and Amino Acids on Somatic Embryogenesis Induction from Shoot Apices of Pea. Plant Cell, Tissue and Organ Culture, 41, 267-275.
https://doi.org/10.1007/bf00045091
[24]  Raquin, C. (1983) Utilization of Different Sugars as Carbon Source for in Vitro Anther Culture of Petunia. Zeitschrift für Pflanzenphysiologie, 111, 453-457.
https://doi.org/10.1016/s0044-328x(83)80009-9
[25]  Stoop, J. and Pharr, D.M. (1993) Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures. Plant Physiology, 103, 1001-1008.
https://doi.org/10.1104/pp.103.3.1001
[26]  Ahmad, T., Abbasi, N.A., Hafiz, I.A. and Ali, A. (2007) Comparison of Sucrose and Sorbitol as Main Carbon Energy Sources in Micropropagation of Peach Rootstock GF-677. Pakistan Journal of Botany, 39, 1269-1275.
[27]  Sotiropoulos, T.E., Molassiotis, A.N., Mouhtaridou, G.I., Papadakis, I., Dimassi, K.N., Therios, I.N., et al. (2006) Sucrose and Sorbitol Effects on Shoot Growth and Proliferation in Vitro, Nutritional Status and Peroxidase and Catalase Isoenzymes of M 9 and MM 106 Apple (Malus domestica Borkh.) Rootstocks. European Journal of Horticultural Science, 71, 114-119.
https://doi.org/10.1079/ejhs.2006/338654
[28]  Bellettre, A., Couillerot, J., Blervacq, A., Aubert, S., Gout, E., Hilbert, J., et al. (2001) Glycerol Effects Both Carbohydrate Metabolism and Cytoskeletal Rearrangements during the Induction of Somatic Embryogenesis in Chicory Leaf Tissues. Plant Physiology and Biochemistry, 39, 503-511.
https://doi.org/10.1016/s0981-9428(01)01263-3
[29]  Lipavská, H. and Konrádová, H. (2004) Somatic Embryogenesis in Conifers: The Role of Carbohydrate Metabolism. In Vitro Cellular & Developmental BiologyPlant, 40, 23-30.
https://doi.org/10.1079/ivp2003482
[30]  Hong, P.I., Chen, J.T. and Chang, W.C. (2008) Promotion of Direct Somatic Embryogenesis of Oncidium by Adjusting Carbon Sources. Biologia Plantarum, 52, 597-600.
https://doi.org/10.1007/s10535-008-0119-z
[31]  Basak, S., Parajulee, D., Dhir, S., Sangra, A. and Dhir, S.K. (2024) Improved Protocol for Efficient Agrobacterium-Mediated Transient Gene Expression in Medicago sativa L. Plants, 13, Article 2992.
https://doi.org/10.3390/plants13212992
[32]  Filonova, L.H., Bozhkov, P.V., Brukhin, V.B., Daniel, G., Zhivotovsky, B. and Arnold, S.V. (2000) Two Waves of Programmed Cell Death Occur during Formation and Development of Somatic Embryos in the Gymnosperm, Norway Spruce. Journal of Cell Science, 113, 4399-4411.
https://doi.org/10.1242/jcs.113.24.4399
[33]  Parrott, W.A. and Bailey, M.A. (1993) Characterization of Recurrent Somatic Embryogenesis of Alfalfa on Auxin-Free Medium. Plant Cell, Tissue and Organ Culture, 32, 69-76.
https://doi.org/10.1007/bf00040118
[34]  Alina, T., Magdalena, J. and Andrzej, T. (2006) The Effect of Carbon Source on Callus Induction and Regeneration Ability in Pharbitis Nil. Acta Physiologiae Plantarum, 28, 619-626.
https://doi.org/10.1007/s11738-006-0058-2
[35]  Moon, H., Kim, Y., Hong, Y. and Park, S. (2013) Improvement of Somatic Embryogenesis and Plantlet Conversion in Oplopanax elatus, an Endangered Medicinal Woody Plant. SpringerPlus, 2, 1-8.
https://doi.org/10.1186/2193-1801-2-428
[36]  Wolter, K.E. and Skoog, F. (1966) Nutritional Requirements of Fraxinus Callus Cultures. American Journal of Botany, 53, 263-269.
https://doi.org/10.1002/j.1537-2197.1966.tb07333.x
[37]  Cunha, A. and Fernandes-Ferreira, M. (1999) Influence of Medium Parameters on Somatic Embryogenesis from Hypocotyl Explants of Flax (Linum usitatissimum L.): Effect of Carbon Source, Total Inorganic Nitrogen and Balance between Ionic Forms, and Interaction between Calcium and Zeatin. Journal of Plant Physiology, 155, 591-597.
https://doi.org/10.1016/s0176-1617(99)80059-5
[38]  Harada, H. and Murai, Y. (1996) Micropropagation of Prunus mume. Plant Cell, Tissue and Organ Culture, 46, 265-267.
https://doi.org/10.1007/bf02307104
[39]  Cuenca, B. and Vieitez, A.M. (2000) Influence of Carbon Source on Shoot Multiplication and Adventitious Bud Regeneration in in Vitro Beech Cultures. Plant Growth Regulation, 32, 1-12.
https://doi.org/10.1023/a:1006329510280
[40]  Levi, A. and Sink, K.C. (1990) Differential Effects of Sucrose, Glucose and Fructose during Somatic Embryogenesis in Asparagus. Journal of Plant Physiology, 137, 184-189.
https://doi.org/10.1016/s0176-1617(11)80079-9
[41]  Singh, B.M. (2015) Effects of Sugars on in Vitro Culture of Bauhinia purpurea L. Nepal Journal of Science and Technology, 15, 47-50.
https://doi.org/10.3126/njst.v15i2.12113
[42]  Blanc, G., Michaux-Ferrière, N., Teisson, C., Lardet, L. and Carron, M.P. (1999) Effects of Carbohydrate Addition on the Induction of Somatic Embryogenesis in Hevea brasiliensis. Plant Cell, Tissue and Organ Culture, 59, 103-112.
https://doi.org/10.1023/a:1006437731011
[43]  Karami, O., Deljou, A., Esna-Ashari, M. and Ostad-Ahmadi, P. (2006) Effect of Sucrose Concentrations on Somatic Embryogenesis in Carnation (Dianthus caryophyllus L.). Scientia Horticulturae, 110, 340-344.
https://doi.org/10.1016/j.scienta.2006.07.029
[44]  Rai, M.K., Akhtar, N. and Jaiswal, V.S. (2007) Somatic Embryogenesis and Plant Regeneration in Psidium guajava L. cv. Banarasi Local. Scientia Horticulturae, 113, 129-133.
https://doi.org/10.1016/j.scienta.2007.02.010
[45]  Iraqi, D. and Tremblay, F.M. (2001) The Role of Sucrose during Maturation of Black Spruce (Picea mariana) and White Spruce (Picea glauca) Somatic Embryos. Physiologia Plantarum, 111, 381-388.
https://doi.org/10.1034/j.1399-3054.2001.1110316.x
[46]  Ming, N.J., Binte Mostafiz, S., Johon, N.S., Abdullah Zulkifli, N.S. and Wagiran, A. (2019) Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar. Plants, 8, Article 144.
https://doi.org/10.3390/plants8060144
[47]  El-Bakry, A.A. (2002) Effect of Genotype, Growth Regulators, Carbon Source, and pH on Shoot Induction and Plant Regeneration in Tomoto. In Vitro Cellular & Developmental BiologyPlant, 38, 501-507.
https://doi.org/10.1079/ivp2002338
[48]  Gill, N.K., Gill, R. and Gosal, S.S. (2004) Factors Enhancing Somatic Embryogenesis and Plant Regeneration in Sugarcane (Saccharum officinarum L.). Indian Journal of Biotechnology, 3, 119-123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133