全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First Study of Seawater Carbonate Chemistry Variability in a Portion of the Southern Atlantic Coast of Cameroon: Impact of Organic Pollution

DOI: 10.4236/jwarp.2025.176020, PP. 403-424

Keywords: Carbonate System, Variability, Coastal Ocean, Ocean Acidification, Cameroon

Full-Text   Cite this paper   Add to My Lib

Abstract:

The carbonate system variability and acidification process remain little understood in the coastal ocean of Cameroon. The aim of this study was to assess the variability of the carbonate system in a portion of the southern coast of Cameroon, and the influence of local seawater physicochemical and biological properties on keys parameters of this system. The study was carried out at three fixed sampling stations (Bp, Kb, and Eb), from September 2021 to August 2022 involving all the seasons encountered in the study area. The carbonate system was determined from Total alkalinity (TA), pH, temperature and salinity, using the CO2SYS_xls program. In addition, nutrients (nitrate, nitrite, phosphate and nitrogen ammonia) and chlorophyll-a data were collected simultaneously at each station. The results showed a high variability of the carbonate system parameters on both temporal and spatial scale. TA and bicarbonate ions ( HCO 3 ) were significantly different between the large rainy season (LRS) and small rainy season (SRS), while CO 2 and CO 2 partial pressure ( pCO 2 ) were significantly different between Kb and Eb sampling stations (p-value < 0.05). The critical thresholds for ocean acidification (OA) seems to not been reached in the southern coastal ocean of Cameroon, given the means values of pH (8.14 ± 0.17), aragonite (3.31 ± 1.3 ?) and calcite (5.3 ± 2.05 ?) saturation states obtained. Salinity appears as the main driver of the variability of TA in the study area, while, nitrogen ammonia and the dissolved carbon dioxide from the degradation of organic matter, respiration and atmospheric absorption, appears as the drivers of pH variation. The large rainy season (LRS) seems to be the most critical period for OA sensitive organisms, while the Bp station looks most vulnerable.

References

[1]  Millero, F.J. (2000) The Carbonate System in Marine Environments. In: Gianguzza, A., Pelizetti, E. and Sammartano, S., Eds., Chemical Processes in Marine Environments, Springer, 9-41.
https://doi.org/10.1007/978-3-662-04207-6_2
[2]  Cai, W., Xu, Y., Feely, R.A., Wanninkhof, R., Jönsson, B., Alin, S.R., et al. (2020) Controls on Surface Water Carbonate Chemistry along North American Ocean Margins. Nature Communications, 11, Article No. 2691.
https://doi.org/10.1038/s41467-020-16530-z
[3]  IOC-UNESCO (2022) State of the Ocean Report, Pilot Edition. IOC-UNESCO, Report No. IOC Technical Series, 173.
[4]  Von Schuckmann, K., Moreira, L., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., et al. (2024) 8th Edition of the Copernicus Ocean State Report (OSR8). Copernicus GmbH.
https://doi.org/10.5194/sp-4-osr8
[5]  Gattuso, J.P. and Hansson, L. (2011) Ocean Acidification. Oxford University Press.
https://doi.org/10.1093/oso/9780199591091.001.0001
[6]  Stark, J.S., Roden, N.P., Johnstone, G.J., Milnes, M., Black, J.G., Whiteside, S., et al. (2018) Carbonate Chemistry of an In-Situ Free-Ocean CO2 Enrichment Experiment (antFOCE) in Comparison to Short Term Variation in Antarctic Coastal Waters. Scientific Reports, 8, Article No. 2816.
https://doi.org/10.1038/s41598-018-21029-1
[7]  Aze, T., Barry, J., Bellerby, R. and Secretariat of the Convention on Biological Diversity (2014) An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity. CBD Technical Series No. 75.
[8]  Hurd, C.L., Lenton, A., Tilbrook, B. and Boyd, P.W. (2018) Current Understanding and Challenges for Oceans in a Higher-CO2 World. Nature Climate Change, 8, 686-694.
https://doi.org/10.1038/s41558-018-0211-0
[9]  Leung, J.Y.S., Zhang, S. and Connell, S.D. (2022) Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta‐analysis of 980+ Studies Spanning Two Decades. Small, 18, Article ID: 2107407.
https://doi.org/10.1002/smll.202107407
[10]  Intergovernmental Panel on Climate Change (IPCC) (2019) The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
https://doi.org/10.1017/9781009157964
[11]  McGarry, K., Siedlecki, S.A., Salisbury, J. and Alin, S.R. (2021) Multiple Linear Regression Models for Reconstructing and Exploring Processes Controlling the Carbonate System of the Northeast US from Basic Hydrographic Data. Journal of Geophysical Research: Oceans, 126, e2020JC016480.
https://doi.org/10.1029/2020jc016480
[12]  McCutcheon, M.R., Yao, H., Staryk, C.J. and Hu, X. (2021) Temporal Variability and Driving Factors of the Carbonate System in the Aransas Ship Channel, TX, USA: A Time Series Study. Biogeosciences, 18, 4571-4586.
https://doi.org/10.5194/bg-18-4571-2021
[13]  Cai, W., Hu, X., Huang, W., Murrell, M.C., Lehrter, J.C., Lohrenz, S.E., et al. (2011) Acidification of Subsurface Coastal Waters Enhanced by Eutrophication. Nature Geoscience, 4, 766-770.
https://doi.org/10.1038/ngeo1297
[14]  Morrell, B. (2019) Coastal Ocean Acidification: Carbonate Chemistry and Ecosystem Effects. Encyclopedia of Ocean Sciences, 1, 671-674.
https://doi.org/10.1016/b978-0-12-409548-9.11289-8
[15]  Grear, J.S., Rynearson, T.A., Montalbano, A.L., Govenar, B. and Menden-Deuer, S. (2017) pCO2 Effects on Species Composition and Growth of an Estuarine Phytoplankton Community. Estuarine, Coastal and Shelf Science, 190, 40-49.
https://doi.org/10.1016/j.ecss.2017.03.016
[16]  Pajusalu, L., Dupont, S., Lainela, S. and Martin, G. (2019) Ocean Acidification Research in Estonia: Challenges and Opportunities. Proceedings of the Estonian Academy of Sciences, 68, 22-31.
https://doi.org/10.3176/proc.2019.1.05
[17]  Enochs, I.C., Manzello, D.P., Jones, P.R., Stamates, S.J. and Carsey, T.P. (2019) Seasonal Carbonate Chemistry Dynamics on Southeast Florida Coral Reefs: Localized Acidification Hotspots from Navigational Inlets. Frontiers in Marine Science, 6, Article 160.
https://doi.org/10.3389/fmars.2019.00160
[18]  Lefèvre, N. (2009) Low CO2 Concentrations in the Gulf of Guinea during the Upwelling Season in 2006. Marine Chemistry, 113, 93-101.
https://doi.org/10.1016/j.marchem.2009.01.001
[19]  Koffi, K.U., Konan, E.S., Hassoun, A.E.R. and Kouadio, Y. (2024) Relationship between the Carbonate System and Phytoplankton Community in the Gulf of Guinea-Africa. Frontiers in Marine Science, 11, Article 1286338.
https://doi.org/10.3389/fmars.2024.1286338
[20]  Koffi, K.U. (2014) Distribution des paramètres du carbone et du flux de CO2 à l’interface air-mer dans l’Est de l’Atlantique tropical. Université Pierre et Marie Curie-Paris VI, Université de Cocody Abidjan. Université De Cocody Abidjan.
[21]  Kwame Kpaliba, R. and Bawa, M. (2022) Variability of Carbonate Chemistry of Seawater of the Central Atlantic Coastline of Ghana. Journal of Phase Change Material, 2, 12-23.
[22]  Tilbrook, B., Jewett, E.B., DeGrandpre, M.D., Hernandez-Ayon, J.M., Feely, R.A., Gledhill, D.K., et al. (2019) An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange. Frontiers in Marine Science, 6, Article 337.
https://doi.org/10.3389/fmars.2019.00337
[23]  Bilounga, U.J.F., Onana, F.M. and Efole E., T. (2022) Potential Impacts of Ocean Acidification in Cameroon Marine and Coastal Ecosystems (Central Africa). Academia Letters.
https://doi.org/10.20935/al1482
[24]  Molua, E. (2006) Climatic Trends in Cameroon: Implications for Agricultural Management. Climate Research, 30, 255-262.
https://doi.org/10.3354/cr030255
[25]  Pouokam, G. and Lemnuy, W.B. (2012) Cameroon Climate Compatible Development: Cameroon Case Study.
https://doi.org/10.13140/RG.2.1.2202.0326
[26]  climate-data.org (2019) Kribi Climate: Average Temperature, Weather by Month, Kribi Water Temperature.
[27]  Onguene, R., Pemha, E., Lyard, F., Du-Penhoat, Y., Nkoue, G., Duhaut, T., et al. (2015) Overview of Tide Characteristics in Cameroon Coastal Areas Using Recent Observations. Open Journal of Marine Science, 5, 81-98.
https://doi.org/10.4236/ojms.2015.51008
[28]  Yuan, X., Zhang, B., Liang, R., Wang, R. and Sun, Y. (2020) Environmental Impact of the Natural Gas Liquefaction Process: An Example from China. Applied Sciences, 10, Article 1701.
https://doi.org/10.3390/app10051701
[29]  Ayissi, I., Aksissou, M., Tiwari, M. and Fretey, J. (2014) Caractérisation des habitats benthiques et ponte des tortues marines autour du parc national de Campo-Ma’an (Cameroun). International Journal of Biological and Chemical Sciences, 7, 1820-1828.
https://doi.org/10.4314/ijbcs.v7i5.3
[30]  Esri National Geographic (2025) NatGeo_World_Map (MapServer).
[31]  Dickson, A.G., Sabine, C.L., Christian, J.R. and Bargeron, C.P. (2007) Guide to Best Practices for Ocean CO2 Measurements. North Pacific Marine Science Organization.
[32]  Pimenta, A. and Grear, J. (2018) Guidelines for Measuring Changes in Seawater pH and Associated Carbonate Chemistry in Coastal Environments of the Eastern United States. EPA/600/R-17/483, 59.
[33]  Dickson, A. (2010) Standards for Ocean Measurements. Oceanography, 23, 34-47.
https://doi.org/10.5670/oceanog.2010.22
[34]  Fassbender, A.J., Sabine, C.L. and Feifel, K.M. (2016) Consideration of Coastal Carbonate Chemistry in Understanding Biological Calcification. Geophysical Research Letters, 43, 4467-4476.
https://doi.org/10.1002/2016gl068860
[35]  Dickson, A.G. (2010) Part 1: Seawater Carbonate Chemistry. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Publications Office of the European Union, 36.
[36]  ICOS (Ocean Thematic Centre) (2018) Calculation Uncertainty of pCO2 from Discrete Samples of TA, DIC, and pH.
[37]  Pierrot, D., Lewis, E. and Wallace, D.W.R. (2006) MS Excel Program Developed for CO2 System Calculations. Carbon Dioxide Information Analysis Center (CDIAC) Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
[38]  Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H. and Pierrot, D. (2006) Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature. Marine Chemistry, 100, 80-94.
https://doi.org/10.1016/j.marchem.2005.12.001
[39]  Dickson, A.G. (1990) Standard Potential of the Reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the Standard Acidity Constant of the Ion HSO4 in Synthetic Sea Water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22, 113-127.
https://doi.org/10.1016/0021-9614(90)90074-z
[40]  Uppström, L.R. (1974) The Boron/Chlorinity Ratio of Deep-Sea Water from the Pacific Ocean. Deep Sea Research and Oceanographic Abstracts, 21, 161-162.
https://doi.org/10.1016/0011-7471(74)90074-6
[41]  R Core Team (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
[42]  McGrath, T., McGovern, E., Gregory, C. and Cave, R.R. (2019) Local Drivers of the Seasonal Carbonate Cycle across Four Contrasting Coastal Systems. Regional Studies in Marine Science, 30, Article ID: 100733.
https://doi.org/10.1016/j.rsma.2019.100733
[43]  Jones, E.M., Renner, A.H.H., Chierici, M., Wiedmann, I., Lødemel, H.H. and Biuw, M. (2020) Seasonal Dynamics of Carbonate Chemistry, Nutrients and CO2 Uptake in a Sub-Arctic Fjord. Elem Sci Anth, 8, Article 41.
https://doi.org/10.1525/elementa.438
[44]  Baldry, K., Hardman-Mountford, N. and Greenwood, J. (2017) Estimating Total Alkalinity for Coastal Ocean Acidification Monitoring at Regional to Continental Scales in Australian Coastal Waters. Biogeosciences Discussions.
[45]  Jiang, Z., Tyrrell, T., Hydes, D.J., Dai, M. and Hartman, S.E. (2014) Variability of Alkalinity and the Alkalinity‐Salinity Relationship in the Tropical and Subtropical Surface Ocean. Global Biogeochemical Cycles, 28, 729-742.
https://doi.org/10.1002/2013gb004678
[46]  Koziorowska-Makuch, K., Szymczycha, B., Thomas, H. and Kuliński, K. (2023) The Marine Carbonate System Variability in High Meltwater Season (Spitsbergen Fjords, Svalbard). Progress in Oceanography, 211, Article ID: 102977.
https://doi.org/10.1016/j.pocean.2023.102977
[47]  Fassbender, A.J., Alin, S.R., Feely, R.A., Sutton, A.J., Newton, J.A. and Byrne, R.H. (2016) Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research. Estuaries and Coasts, 40, 404-418.
https://doi.org/10.1007/s12237-016-0168-z
[48]  Millero, F.J., Lee, K. and Roche, M. (1998) Distribution of Alkalinity in the Surface Waters of the Major Oceans. Marine Chemistry, 60, 111-130.
https://doi.org/10.1016/s0304-4203(97)00084-4
[49]  Wallace, R.B., Baumann, H., Grear, J.S., Aller, R.C. and Gobler, C.J. (2014) Coastal Ocean Acidification: The Other Eutrophication Problem. Estuarine, Coastal and Shelf Science, 148, 1-13.
https://doi.org/10.1016/j.ecss.2014.05.027
[50]  Friedrich, T., Timmermann, A., Abe-Ouchi, A., Bates, N.R., Chikamoto, M.O., Church, M.J., et al. (2012) Detecting Regional Anthropogenic Trends in Ocean Acidification against Natural Variability. Nature Climate Change, 2, 167-171.
https://doi.org/10.1038/nclimate1372
[51]  Thor, P. and Dupont, S. (2017) Ocean Acidification. In: Salomon, M. and Markus, T., Eds., Handbook on Marine Environment Protection, Springer, 375-394.
https://doi.org/10.1007/978-3-319-60156-4_19
[52]  Ebango Ngando, N., Regis Christian, M.N., Song, L.M., Achille, N.P., Li, C.H. AND Minette, T.E. (2021) Catch Statistics from Artisanal Marine Fishing: A Case of the South Coast. African Journal of Fisheries Sciences, 9, 1-13.
[53]  Le Quesne, W.J.F. and Pinnegar, J.K. (2011) The Potential Impacts of Ocean Acidification: Scaling from Physiology to Fisheries: Potential Acidification Impacts on Fisheries. Fish and Fisheries, 13, 333-344.
https://doi.org/10.1111/j.1467-2979.2011.00423.x
[54]  Mostofa, K.M.G., Liu, C., Zhai, W., Minella, M., Vione, D., Gao, K., et al. (2016) Reviews and Syntheses: Ocean Acidification and Its Potential Impacts on Marine Ecosystems. Biogeosciences, 13, 1767-1786.
https://doi.org/10.5194/bg-13-1767-2016
[55]  Widdicombe, S., Isensee, K., Artioli, Y., Gaitán-Espitia, J.D., Hauri, C., Newton, J.A., et al. (2023) Unifying Biological Field Observations to Detect and Compare Ocean Acidification Impacts across Marine Species and Ecosystems: What to Monitor and Why. Ocean Science, 19, 101-119.
https://doi.org/10.5194/os-19-101-2023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133