|
基于鄂尔多斯盆地西北缘地区烃源岩有机碳含量测井评价方法研究
|
Abstract:
烃源岩总有机碳(Total Organic Carbon, TOC)含量是非常规油气藏的重要参数之一,准确评价TOC含量对非常规油气藏的勘探开发具有重要意义。本文研究了两类TOC评价方法,一类方法基于物理模型评价烃源岩有机碳含量,包括?LogR方法、变基线方法以及双差分方法(DD?LogR)。相较于?LogR方法,变基线方法改进了基线确定方法,提高了模型精度;双差分方法不仅考虑基线问题,还考虑到岩石矿物成分的变化和孔隙扩大的影响,在三种基于物理模型的TOC评价方法中效果最优。另一类方法基于机器学习评价烃源岩有机碳含量,本文对比了BP神经网络、LSTM神经网络、与物理模型结合的BP神经网络、与物理模型结合的LSTM神经网络,在四种神经网络方法中,与物理模型结合的LSTM神经网络评价TOC效果最优。本研究建立的综合评价方法体系,为鄂尔多斯盆地西北缘复杂地质条件下烃源岩有机质含量预测提供了创新性的技术路径。
The total organic carbon (TOC) content of source rocks is one of the important parameters for unconventional oil and gas reservoirs. Accurate evaluation of the TOC content is of great significance for the exploration and development of unconventional oil and gas reservoirs. This study investigates two types of TOC evaluation methods. For physical-model-based methods, it includes the ?LogR method, the variable baseline method, and the double difference method (DD?LogR). Compared with the ?LogR method, the variable baseline method improves baseline determination and enhances model accuracy; the double-difference method (DD?LogR) further considers rock mineral composition changes and pore expansion, outperforming the other two physical-model-based methods. Regarding machine-learning-based methods, a comparison of BP neural network, LSTM neural network, and their hybrid versions integrated with physical models shows that the LSTM neural network combined with physical models yields the most accurate TOC evaluation. The comprehensive evaluation framework established here offers an innovative solution for predicting source-rock organic matter content in the complex geological environment of the northwestern Ordos Basin, potentially improving resource assessment efficiency and accuracy in similar settings.
[1] | 王宵宇, 谢然红, 毛治国, 等. 基于集成学习的烃源岩总有机碳含量测井评价方法研究[J]. 地球物理学进展, 2022, 37(2): 684-694. |
[2] | 边雷博, 柳广弟, 孙明亮, 等. 优化的∆logR技术及其在中——深层烃源岩总有机碳含量预测中的应用[J]. 油气地质与采收率, 2018, 25(4): 40-45. |
[3] | 陈海峰, 王凤启, 王民, 等. 基于变系数∆logR技术的烃源岩TOC精细评价[J]. 中国石油大学学报(自然科学版), 2017, 41(4): 54-64. |
[4] | 张晗, 卢双舫, 李文浩, 等. ∆LogR技术与BP神经网络在复杂岩性致密层有机质评价中的应用[J]. 地球物理学进展, 2017, 32(3): 1308-1313. |
[5] | 杨锋, 李生杰, 张小龙. 基于变基线的∆logR法研究[C]//中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地球物理学会. 2016中国地球科学联合学术年会论文集. 2016: 123-126. |
[6] | Liu, C., Zhao, W., Sun, L., Zhang, Y., Chen, X. and Li, J. (2021) An Improved Δlogr Model for Evaluating Organic Matter Abundance. Journal of Petroleum Science and Engineering, 206, Article ID: 109016. https://doi.org/10.1016/j.petrol.2021.109016 |
[7] | Bai, Y. and Tan, M. (2021) Dynamic Committee Machine with Fuzzy-C-Means Clustering for Total Organic Carbon Content Prediction from Wireline Logs. Computers & Geosciences, 146, Article 104626. https://doi.org/10.1016/j.cageo.2020.104626 |
[8] | Rui, J., Zhang, H., Zhang, D., Han, F. and Guo, Q. (2019) Total Organic Carbon Content Prediction Based on Support-Vector-Regression Machine with Particle Swarm Optimization. Journal of Petroleum Science and Engineering, 180, 699-706. https://doi.org/10.1016/j.petrol.2019.06.014 |
[9] | Wang, P., Peng, S. and He, T. (2018) A Novel Approach to Total Organic Carbon Content Prediction in Shale Gas Reservoirs with Well Logs Data, Tonghua Basin, China. Journal of Natural Gas Science and Engineering, 55, 1-15. https://doi.org/10.1016/j.jngse.2018.03.029 |
[10] | 魏红伟, 袁江, 田杰. 融合物理模型和神经网络的图像去雾方法与实现[J]. 现代电子技术, 2022, 45(9): 55-60. |
[11] | Kim, T., Lee, H. and Lee, W. (2022) Physics Embedded Neural Network Vehicle Model and Applications in Risk-Aware Autonomous Driving Using Latent Features. arXiv: 2207.07920 |
[12] | Passey, Q.R., Creaney, S., Kulla, J.B., et al. (1990) A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 741, 777-1794. |
[13] | Zhao, P., Ma, H., Rasouli, V., Liu, W., Cai, J. and Huang, Z. (2017) An Improved Model for Estimating the TOC in Shale Formations. Marine and Petroleum Geology, 83, 174-183. https://doi.org/10.1016/j.marpetgeo.2017.03.018 |
[14] | Zhu, L., Zhang, C., Zhang, Z., Zhou, X. and Liu, W. (2019) An Improved Method for Evaluating the TOC Content of a Shale Formation Using the Dual-Difference Δlogr Method. Marine and Petroleum Geology, 102, 800-816. https://doi.org/10.1016/j.marpetgeo.2019.01.031 |
[15] | 中文期刊网. 人工神经网络的实际应用范例6篇[Z/OL]. https://www.baywatch.cn/, 2024-03-28. |
[16] | Utans, J., Moody, J., Ehfuss, S., et al. (1995) Input Variable Selection for Neural Networks: Application to Predicting the U.S. Business Cycle. Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr), New York, 9-11 April 1995, 118-122 |
[17] | 姚立忠, 李太福, 易军, 等. 神经网络模型的透明化及输入变量约简[J]. 计算机科学, 2012, 39(9): 247-251+278. |
[18] | 王维, 姜珊, 胡剑琇, 等. 基于特征选择的CNN-LSTM结构应变响应预测方法[J/OL]. 土木与环境工程学报(中英文), 1-11. http://kns.cnki.net/kcms/detail/50.1218.TU.20250408.1700.006.html, 2025-06-11. |
[19] | Duan, J., Hu, L., Xiao, Q., Liu, M. and Yu, W. (2025) A Geographic Information Encryption System Based on Chaos-LSTM and Chaos Sequence Proliferation. Frontiers of Information Technology & Electronic Engineering, 26, 427-440. https://doi.org/10.1631/fitee.2300755 |