全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fe50(CoCrNi)50?xMox多主元合金成分调控对其组织与性能影响的研究
Study on the Effect of Compositional Modulation of Fe50(CoCrNi)50?xMox Multi-Principal Alloys on Their Organization and Properties

DOI: 10.12677/meng.2025.122009, PP. 67-71

Keywords: 多主元合金,钼合金元素,部分再结晶组织,拉伸性能
Multi-Principal Alloys
, Mo Alloying Elements, Partially Recrystallized Organization, Tensile Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究通过掺杂具有较大原子半径的元素钼(Mo),设计Fe50(CoCrNi)50?xMox (x = 5, 9, 13)多主元合金体系,系统探究了Mo含量对合金微观组织与力学性能的调控作用。通过冷轧和热处理,获得部分再结晶异质结构,使得Fe50(CoCrNi)41Mo9合金在室温下表现出高屈服强度(1096 MPa)和优异的延展性(19.6%),展示了强度和延展性的平衡增强。透射电镜(TEM)与电子背散射衍射(EBSD)分析进一步揭示了变形过程中位错在异质界面处的累积与动态再分配行为,为多主元合金的强韧化设计提供了新思路。
In this study, we designed Fe50(CoCrNi)50?xMox (x = 5, 9, 13) multi-principal alloy system by doping molybdenum (Mo), which is an element with a large atomic radius, and systematically explored the modulation effect of Mo content on the microstructure and mechanical properties of the alloy. A partially recrystallized heterostructure was obtained by cold rolling and heat treatment, resulting in Fe50(CoCrNi)41Mo9 alloy exhibiting high yield strength (1096 MPa) and excellent ductility (19.6%) at room temperature, demonstrating a balanced enhancement of strength and ductility. Transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analyses further reveal the accumulation and dynamic redistribution behavior of dislocations at heterogeneous interfaces during the deformation process, which provides a new idea for the design of toughened multi-principal element alloys.

References

[1]  Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., et al. (2016) Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures. Nature Communications, 7, Article No. 10602.
https://doi.org/10.1038/ncomms10602
[2]  Liu, W.H., Yang, T. and Liu, C.T. (2018) Precipitation Hardening in CoCrFeNi-Based High Entropy Alloys. Materials Chemistry and Physics, 210, 2-11.
https://doi.org/10.1016/j.matchemphys.2017.07.037
[3]  Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., et al. (2017) Dislocation Mechanisms and 3D Twin Architectures Generate Exceptional Strength-Ductility-Toughness Combination in CrCoNi Medium-Entropy Alloy. Nature Communications, 8, Article No. 14390.
https://doi.org/10.1038/ncomms14390
[4]  Bae, J.W., Park, J.M., Moon, J., Choi, W.M., Lee, B. and Kim, H.S. (2019) Effect of Μ-Precipitates on the Microstructure and Mechanical Properties of Non-Equiatomic CoCrFeNiMo Medium-Entropy Alloys. Journal of Alloys and Compounds, 781, 75-83.
https://doi.org/10.1016/j.jallcom.2018.12.040
[5]  Sathiyamoorthi, P. and Kim, H.S. (2022) High-Entropy Alloys with Heterogeneous Microstructure: Processing and Mechanical Properties. Progress in Materials Science, 123, Article ID: 100709.
https://doi.org/10.1016/j.pmatsci.2020.100709
[6]  Du, X.H., Li, W.P., Chang, H.T., Yang, T., Duan, G.S., Wu, B.L., et al. (2020) Dual Heterogeneous Structures Lead to Ultrahigh Strength and Uniform Ductility in a Co-Cr-Ni Medium-Entropy Alloy. Nature Communications, 11, Article No. 2390.
https://doi.org/10.1038/s41467-020-16085-z
[7]  Hughes, D.A. and Hansen, N. (2018) The Microstructural Origin of Work Hardening Stages. Acta Materialia, 148, 374-383.
https://doi.org/10.1016/j.actamat.2018.02.002
[8]  Wu, S.W., Wang, G., Wang, Q., Jia, Y.D., Yi, J., Zhai, Q.J., et al. (2019) Enhancement of Strength-Ductility Trade-Off in a High-Entropy Alloy through a Heterogeneous Structure. Acta Materialia, 165, 444-458.
https://doi.org/10.1016/j.actamat.2018.12.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133