|
合金化元素对Al-Cu合金组织及性能调控
|
Abstract:
本文通过在Al-4.6Cu合金的基础上逐级添加过渡金属元素Ag、稀土元素Sc、陶瓷相形成元素Zr和C的方式,从而来研究耐热铝合金的多种元素对组织结构的调控机制,明确了其力学性能的强化效果可叠加。同时逐级添加元素之后的合金晶粒尺寸逐渐减少,析出相类型从单一的Al2Cu增加至Al2Cu、Al3Sc和ZrC三类析出相复合的组织结构;通过组织结构的均匀化程度作为判据,获得了最佳的固溶处理工艺,通过时效后组织的硬度,获得了最佳的时效处理工艺;结合力学性能测试,发现逐级增加微量元素的方式会造成铸态及热处理态后力学性能的提升,且高温测试表明250℃和300℃下的力学性能同样获得了改善。
In this paper, by adding the transition metal element Ag, the rare earth element Sc, and the ceramic phase forming elements Zr and C step by step on the basis of Al-4.6Cu alloy, so as to study the mechanism of regulating the organization and structure of heat-resistant aluminum alloys by a variety of elements, and to make clear that the reinforcing effect of its mechanical properties can be superimposed. Meanwhile, the grain size of the alloy after adding elements step by step was gradually reduced, and the type of precipitation phase increased from single Al2Cu to the organizational structure of the composite of three types of precipitation phases, namely, Al2Cu, Al3Sc and ZrC; the optimal solid solution treatment process was obtained by using the degree of homogenization of the organizational structure as a criterion and the optimal aging treatment process was obtained by using the hardness of the organization after aging; In conjunction with mechanical property tests, it was found that the stepwise increase of trace elements resulted in improved mechanical properties in the as-cast and heat-treated states, and high-temperature tests showed that the same improvement in mechanical properties was obtained at 250?C and 300?C.
[1] | Czerwinski, F. (2020) Thermal Stability of Aluminum Alloys. Materials, 13, Article No. 3441. https://doi.org/10.3390/ma13153441 |
[2] | 管仁国, 娄花芬, 黄晖. 铝合金材料发展现状, 趋势及展望[J]. 中国工程科学, 2020, 22(5): 68-75. |
[3] | 熊艳才, 刘伯操. 铸造铝合金现状及未来发展[J]. 特种铸造及有色合金, 1998(4): 3-7. |
[4] | Xue, H., Yang, C., Zhang, P., Wu, S.H., Liu, G. and Sun, J. (2024) Heat-Resistant Al Alloys: Microstructural Design and Microalloying Effect. Journal of Materials Science, 59, 9749-9767. https://doi.org/10.1007/s10853-023-09295-5 |
[5] | 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. |
[6] | 熊柏青, 闫宏伟, 张永安. 我国航空铝合金产业发展战略研究[J]. 中国工程科学, 2023, 25(1): 88-95. |
[7] | 贾祥磊, 朱秀荣, 陈大辉. 耐热铝合金研究进展[J]. 兵器材料科学与工程, 2010(2): 108-113. |
[8] | Rakhmonov, J., Liu, K., Rometsch, P., Parson, N. and Chen, X. (2021) Effects of Al(MnFe)Si Dispersoids with Different Sizes and Number Densities on Microstructure and Ambient/Elevated-Temperature Mechanical Properties of Extruded Al-Mg-Si AA6082 Alloys with Varying Mn Content. Journal of Alloys and Compounds, 861, Article ID: 157937. https://doi.org/10.1016/j.jallcom.2020.157937 |
[9] | Shi, Q., Huo, Y., Berman, T., Ghaffari, B., Li, M. and Allison, J. (2021) Distribution of Transition Metal Elements in an Al-Si-Cu-Based Alloy. Scripta Materialia, 190, 97-102. https://doi.org/10.1016/j.scriptamat.2020.08.034 |
[10] | Xie, K., Nie, J., Liu, C., Cha, W., Wu, G., Liu, X., et al. (2023) A Novel Al-Cu Composite with Ultra‐High Strength at 350 ˚C via Dual‐Phase Particle Reinforced Submicron‐Structure. Advanced Science, 10, Article ID: 2207208. https://doi.org/10.1002/advs.202207208 |
[11] | 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149. |
[12] | Polmear, I.J., Pons, G., Barbaux, Y., Octor, H., Sanchez, C., Morton, A.J., et al. (1999) After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys. Materials Science and Technology, 15, 861-868. https://doi.org/10.1179/026708399101506599 |
[13] | 黄朝文, 梁益龙, 杨明. 211Z.X耐热高强韧铝合金的疲劳特性[J]. 金属热处理, 2013, 38(2): 43-45. |
[14] | 张德恩, 卢锦德, 张晓燕. 时效工艺对新型高强度铸造铝合金组织和力学性能的影响[J]. 现代机械, 2009(3): 85. |
[15] | Colombo, M., Gariboldi, E. and Morri, A. (2017) Er Addition to Al-Si-Mg-Based Casting Alloy: Effects on Microstructure, Room and High Temperature Mechanical Properties. Journal of Alloys and Compounds, 708, 1234-1244. https://doi.org/10.1016/j.jallcom.2017.03.076 |
[16] | Colombo, M., Gariboldi, E. and Morri, A. (2018) Influences of Different Zr Additions on the Microstructure, Room and High Temperature Mechanical Properties of an A1-7Si-0.4Mg Alloy Modified with 0.25% Er. Materials Science and Engineering: A, 713, 151-160. https://doi.org/10.1016/j.msea.2017.12.068 |
[17] | Shaha, S.K., Czerwinski, F., Kasprzak, W., Friedman, J. and Chen, D.L. (2016) Ageing Characteristics and High-Temperature Tensile Properties of A1-Si-Cu-Mg Alloys with Micro-Additions of Cr, Ti, V and Zr. Materials Science and Engineering: A, 652, 353-364. https://doi.org/10.1016/j.msea.2015.11.049 |