全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二苯并吡喃酮及其衍生物的合成研究进展
Research Progress on the Synthesis of Dibenzopyranone and Its Derivatives

DOI: 10.12677/jocr.2025.132014, PP. 133-145

Keywords: 二苯并吡喃酮,三环骨架,生物活性,药理活性
Dibenzopyranone
, Tricyclic Framework, Biological Activity, Pharmacological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

二苯并吡喃酮及其衍生物是一类具有重要生物活性和应用价值的杂环化合物,广泛存在于天然产物(如黄酮类、香豆素类化合物)中,并展现出抗氧化、抗炎、抗菌及抗肿瘤等特性。近年来,其合成研究已成为有机领域的热点之一。本文系统综述了此类化合物在药物化学和材料科学中的应用潜力,以及合成策略与研究进展,重点讨论了传统合成路线和近年来发展的绿色合成方法。指出了当前合成领域中存在的挑战,并对未来研究方向进行了展望,为二苯并吡喃酮化合物的合成及应用研究提供参考。
Dibenzopyranone and its derivatives are a class of heterocyclic compounds with important biological activity and application value, widely present in natural products such as flavonoids and coumarins, and exhibiting antioxidant, anti-inflammatory, antibacterial, and anti-tumor properties. In recent years, its synthesis research has become one of the hotspots in the organic field. This article systematically reviews the potential applications of such compounds in medicinal chemistry and materials science, as well as their synthesis strategies and research progress, with a focus on traditional synthesis routes and green synthesis methods developed in recent years. The challenges in the current synthesis field were pointed out, and future research directions were discussed, providing reference for the synthesis and application research of dibenzopyranone compounds.

References

[1]  Tanahashi, T., Kuroishi, M., Kuwahara, A., Nagakura, N. and Hamada, N. (1997) Four Phenolics from the Cultured Lichen Mycobiont of Graphis Scripta Var. Pulverulenta. Chemical and Pharmaceutical Bulletin, 45, 1183-1185.
https://doi.org/10.1248/cpb.45.1183
[2]  Tanahashi, T., Takenaka, Y., Nagakura, N. and Hamada, N. (2003) 6H-Dibenzo[b,d]Pyran-6-One Derivatives from the Cultured Lichen Mycobionts of Graphis Spp. and Their Biosynthetic Origin. Phytochemistry, 62, 71-75.
https://doi.org/10.1016/s0031-9422(02)00402-8
[3]  Liang, D., Luo, H., Liu, Y., Hao, Z., Wang, Y., Zhang, C., et al. (2013) Lysilactones A-C, Three 6H-Dibenzo[b,d]Pyran-6-One Glycosides from Lysimachia clethroides, Total Synthesis of Lysilactone A. Tetrahedron, 69, 2093-2097.
https://doi.org/10.1016/j.tet.2013.01.029
[4]  Lou, J., Fu, L., Peng, Y. and Zhou, L. (2013) Metabolites from Alternaria Fungi and Their Bioactivities. Molecules, 18, 5891-5935.
https://doi.org/10.3390/molecules18055891
[5]  Coghlan, M.J., Kym, P.R., Elmore, S.W., Wang, A.X., Luly, J.R., Wilcox, D., et al. (2001) Synthesis and Characterization of Non-Steroidal Ligands for the Glucocorticoid Receptor: Selective Quinoline Derivatives with Prednisolone-Equivalent Functional Activity. Journal of Medicinal Chemistry, 44, 2879-2885.
https://doi.org/10.1021/jm010228c
[6]  Murakami-Nakai, C., Maeda, N., Yonezawa, Y., Kuriyama, I., Kamisuki, S., Takahashi, S., et al. (2004) The Effects of Dehydroaltenusin, a Novel Mammalian DNA Polymerase Α Inhibitor, on Cell Proliferation and Cell Cycle Progression. Biochimica et Biophysica Acta (BBA)-General Subjects, 1674, 193-199.
https://doi.org/10.1016/j.bbagen.2004.06.016
[7]  Zhang, H., Huang, W., Song, Y., Chen, J. and Tan, R. (2005) Four 6H‐Dibenzo[b,d]Pyran-6-One Derivatives Produced by the Endophyte Cephalosporium acremonium IFB-E007. Helvetica Chimica Acta, 88, 2861-2864.
https://doi.org/10.1002/hlca.200590228
[8]  Mao, Z., Sun, W., Fu, L., Luo, H., Lai, D. and Zhou, L. (2014) Natural Dibenzo-α-Pyrones and Their Bioactivities. Molecules, 19, 5088-5108.
https://doi.org/10.3390/molecules19045088
[9]  Seeram, N.P., Aronson, W.J., Zhang, Y., Henning, S.M., Moro, A., Lee, R., et al. (2007) Pomegranate Ellagitannin-Derived Metabolites Inhibit Prostate Cancer Growth and Localize to the Mouse Prostate Gland. Journal of Agricultural and Food Chemistry, 55, 7732-7737.
https://doi.org/10.1021/jf071303g
[10]  Wu, S., Wen, Y., Li, X., Zhao, Y., Zhao, Z. and Hu, J. (2009) Chemical Constituents from the Fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae). Biochemical Systematics and Ecology, 37, 1-5.
https://doi.org/10.1016/j.bse.2009.01.002
[11]  Adams, L.S., Zhang, Y., Seeram, N.P., Heber, D. and Chen, S. (2010) Pomegranate Ellagitannin-Derived Compounds Exhibit Antiproliferative and Antiaromatase Activity in Breast Cancer Cells in Vitro. Cancer Prevention Research, 3, 108-113.
https://doi.org/10.1158/1940-6207.capr-08-0225
[12]  Bialonska, D., Kasimsetty, S.G., Khan, S.I. and Ferreira, D. (2009) Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in a Cell-Based Assay. Journal of Agricultural and Food Chemistry, 57, 10181-10186.
https://doi.org/10.1021/jf9025794
[13]  González-Barrio, R., Truchado, P., Ito, H., Espín, J.C. and Tomás-Barberán, F.A. (2011) UV and MS Identification of Urolithins and Nasutins, the Bioavailable Metabolites of Ellagitannins and Ellagic Acid in Different Mammals. Journal of Agricultural and Food Chemistry, 59, 1152-1162.
https://doi.org/10.1021/jf103894m
[14]  Babich, O.O., Skrypnik, L.N. and Pungin, A.V. (2021) In Vitro Study of the Antioxidant Activity of Extracts from Dried Biomass of Callus, Cell Suspension, and Root Cultures. IOP Conference Series: Earth and Environmental Science, 689, Article 012029.
https://doi.org/10.1088/1755-1315/689/1/012029
[15]  Pozzo, L., Grande, T., Raffaelli, A., Longo, V., Weidner, S., Amarowicz, R., et al. (2023) Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species. Molecules, 28, Article 4924.
https://doi.org/10.3390/molecules28134924
[16]  Doyle, B. and Griffiths, L.A. (1980) The Metabolism of Ellagic Acid in the Rat. Xenobiotica, 10, 247-256.
https://doi.org/10.3109/00498258009033752
[17]  Cerdá, B., Periago, P., Espín, J.C. and Tomás-Barberán, F.A. (2005) Identification of Urolithin a as a Metabolite Produced by Human Colon Microflora from Ellagic Acid and Related Compounds. Journal of Agricultural and Food Chemistry, 53, 5571-5576.
https://doi.org/10.1021/jf050384i
[18]  Gu, W. (2009) Bioactive Metabolites from Alternaria brassicicola ML-P08, an Endophytic Fungus Residing in Malus Halliana. World Journal of Microbiology and Biotechnology, 25, 1677-1683.
https://doi.org/10.1007/s11274-009-0062-y
[19]  Mizushina, Y., Maeda, N., Kuriyama, I. and Yoshida, H. (2011) Dehydroaltenusin Is a Specific Inhibitor of Mammalian DNA Polymerase Α. Expert Opinion on Investigational Drugs, 20, 1523-1534.
https://doi.org/10.1517/13543784.2011.619977
[20]  Ishimoto, H., Tai, A., Yoshimura, M., Amakura, Y., Yoshida, T., Hatano, T., et al. (2012) Antioxidative Properties of Functional Polyphenols and Their Metabolites Assessed by an ORAC Assay. Bioscience, Biotechnology, and Biochemistry, 76, 395-399.
https://doi.org/10.1271/bbb.110717
[21]  Piwowarski, J., Granica, S. and Kiss, A. (2014) Influence of Gut Microbiota-Derived Ellagitanninsʼ Metabolites Urolithins on Pro-Inflammatory Activities of Human Neutrophils. Planta Medica, 80, 887-895.
https://doi.org/10.1055/s-0034-1368615
[22]  Bobowska, A., Granica, S., Filipek, A., Melzig, M.F., Moeslinger, T., Zentek, J., et al. (2021) Comparative Studies of Urolithins and Their Phase II Metabolites on Macrophage and Neutrophil Functions. European Journal of Nutrition, 60, 1957-1972.
https://doi.org/10.1007/s00394-020-02386-y
[23]  Zhou, Q.J., Worm, K. and Dolle, R.E. (2004) 10-Hydroxy-10,9-Boroxarophenanthrenes: Versatile Synthetic Intermediates to 3,4-Benzocoumarins and Triaryls. The Journal of Organic Chemistry, 69, 5147-5149.
https://doi.org/10.1021/jo049343w
[24]  Vishnumurthy, K. and Makriyannis, A. (2010) Novel and Efficient One-Step Parallel Synthesis of Dibenzopyranones via Suzuki-Miyaura Cross Coupling. Journal of Combinatorial Chemistry, 12, 664-669.
https://doi.org/10.1021/cc100068a
[25]  Luo, J., Lu, Y., Liu, S., Liu, J. and Deng, G. (2011) Efficient One-Pot Synthesis of Dibenzopyranones via a Decarboxylative Cross-Coupling and Lactonization Sequence. Advanced Synthesis & Catalysis, 353, 2604-2608.
https://doi.org/10.1002/adsc.201100338
[26]  Xiao, Q., Zhang, Y. and Wang, J. (2012) Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Accounts of Chemical Research, 46, 236-247.
https://doi.org/10.1021/ar300101k
[27]  Singha, R., Roy, S., Nandi, S., Ray, P. and Ray, J.K. (2013) Palladium-Catalyzed One-Pot Suzuki-Miyaura Cross Coupling Followed by Oxidative Lactonization: A Novel and Efficient Route for the One-Pot Synthesis of Benzo[c]Chromene-6-Ones. Tetrahedron Letters, 54, 657-660.
https://doi.org/10.1016/j.tetlet.2012.11.144
[28]  Singha, R., Dhara, S., Ghosh, M. and Ray, J.K. (2015) Copper Catalyzed Room Temperature Lactonization of Aromatic C-H Bond: A Novel and Efficient Approach for the Synthesis of Dibenzopyranones. RSC Advances, 5, 8801-8805.
https://doi.org/10.1039/c4ra13665a
[29]  Zhang, Z., Gao, Y., Liu, Y., Li, J., Xie, H., Li, H., et al. (2015) Organocatalytic Aerobic Oxidation of Benzylic Sp3 C-H Bonds of Ethers and Alkylarenes Promoted by a Recyclable TEMPO Catalyst. Organic Letters, 17, 5492-5495.
https://doi.org/10.1021/acs.orglett.5b02877
[30]  Suárez-Meneses, J.V., Oukhrib, A., Gouygou, M., Urrutigoïty, M., Daran, J.-C., Cordero-Vargas, A., et al. (2016) [N,P]-pyrrole PdCl2 Complexes Catalyzed the Formation of Dibenzo-α-Pyrone and Lactam Analogues. Dalton Transactions, 45, 9621-9630.
https://doi.org/10.1039/c6dt01022a
[31]  Zhang, J., Shi, D., Zhang, H., Xu, Z., Bao, H., Jin, H., et al. (2017) Synthesis of Dibenzopyranones and Pyrazolobenzopyranones through Copper(0)/Selectfluor System-Catalyzed Double CH Activation/Oxygen Insertion of 2-Arylbenzaldehydes and 5-Arylpyrazole-4-Carbaldehydes. Tetrahedron, 73, 154-163.
https://doi.org/10.1016/j.tet.2016.11.069
[32]  Ortiz Villamizar, M.C., Zubkov, F.I., Puerto Galvis, C.E., Vargas Méndez, L.Y. and Kouznetsov, V.V. (2017) The Study of Metal-Free and Palladium-Catalysed Synthesis of Benzochromenes via Direct C-H Arylation Using Unactivated Aryl Benzyl Ethers Derived from Essential Oils as Raw Materials. Organic Chemistry Frontiers, 4, 1736-1744.
https://doi.org/10.1039/c7qo00232g
[33]  Fu, L., Li, S., Cai, Z., Ding, Y., Guo, X., Zhou, L., et al. (2018) Ligand-Enabled Site-Selectivity in a Versatile Rhodium(II)-Catalysed Aryl C-H Carboxylation with CO2. Nature Catalysis, 1, 469-478.
https://doi.org/10.1038/s41929-018-0080-y
[34]  Luo, S., Li, L., Yang, Q. and Jia, Z. (2018) Organocatalytic Electrochemical C-H Lactonization of Aromatic Carboxylic Acids. Synthesis, 50, 2924-2929.
https://doi.org/10.1055/s-0036-1591558
[35]  Khosravi, K. and Naserifar, S. (2019) Urea-2,2-Dihydroperoxypropane as a Novel and High Oxygen Content Alternative to Dihydroperoxypropane in Several Oxidation Reactions. ChemistrySelect, 4, 1576-1585.
https://doi.org/10.1002/slct.201803170
[36]  Luo, Z., Gao, Z., Song, Z., Han, Y. and Ye, S. (2019) Visible Light Mediated Oxidative Lactonization of 2-Methyl-1,1′-Biaryls for the Synthesis of Benzocoumarins. Organic & Biomolecular Chemistry, 17, 4212-4215.
https://doi.org/10.1039/c9ob00529c
[37]  Shirase, S., Tamaki, S., Shinohara, K., Hirosawa, K., Tsurugi, H., Satoh, T., et al. (2020) Cerium(IV) Carboxylate Photocatalyst for Catalytic Radical Formation from Carboxylic Acids: Decarboxylative Oxygenation of Aliphatic Carboxylic Acids and Lactonization of Aromatic Carboxylic Acids. Journal of the American Chemical Society, 142, 5668-5675.
https://doi.org/10.1021/jacs.9b12918
[38]  Chao, M., Wang, H., Zhang, H., Zhong, F., Luo, Z., Wu, F., et al. (2022) Cobalt (II)-Catalyzed Oxidation of 2-Aryl Benzoic Acids to Access Biaryl Lactones. Applied Organometallic Chemistry, 36, e6809.
https://doi.org/10.1002/aoc.6809
[39]  Natarajan, P., Pooja and Meena (2023) 2-Arylbenzyl Methyl Ethers as Precursors for the Tandem Synthesis of Benzo[c]Coumarins over Heterogeneous Visible-Light Photoredox Catalysis with Graphitic Carbon Nitride (g-C3N4). Asian Journal of Organic Chemistry, 12, e202200643.
https://doi.org/10.1002/ajoc.202200643
[40]  Shi, G., Wang, Y., He, M., Yu, X. and Bao, M. (2023) 2,7-Dinitrophenanthrene-9,10-Dione as a Photosensitizer for the Dehydrogenative Lactonization of 2-Arylbenzoic Acids. Organic Chemistry Frontiers, 10, 2429-2433.
https://doi.org/10.1039/d3qo00368j
[41]  Fang, M., Shang, P., Huang, H., Sun, J. and Han, Z. (2024) Synthesis of Lactones via Electrochemical Sequential Oxidative Process. European Journal of Organic Chemistry, 27, e202400557.
https://doi.org/10.1002/ejoc.202400557

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133