|
亚硒酸钠对微拟球藻生长、抗氧化酶活性及硒含量的影响
|
Abstract:
为探究不同质量浓度的亚硒酸钠对微拟球藻(Nannochloropsis oceanica)生长、抗氧化酶活性及硒含量的影响,试验设计0 (对照)、3、6、12、24 mg/L共5个处理组,分别为A、B、C、D和E组,每组设3个平行,定期检测各组微拟球藻的藻细胞密度、相对生长速率、抗氧化酶活性(过氧化氢酶CAT、谷胱甘肽过氧化物酶GSH-Px和超氧化物歧化酶SOD)及硒含量的变化,藻初始接种密度为5 × 106 cells/mL。试验结果表明:C组从第3天开始藻细胞密度显著高于其他组(P < 0.05),且这一优势持续至培养结束,E组结果与C组刚好相反;C组的相对生长速率显著高于对照组、D和E组(P < 0.05),与B组无显著性差异(P > 0.05);从培养第3天至结束,C组微拟球藻细胞密度显著高于对照组和其他浓度组(P < 0.05),而E组微拟球藻细胞密度显著低于对照组和其他浓度组(P < 0.05);C组微拟球藻的相对生长速率显著高于对照组、D和E组(P < 0.05);添加亚硒酸钠能够显著提高微拟球藻抗氧化酶活性(P < 0.05),在培养至第5天时,C组微拟球藻的CAT和GSH-Px酶活性最高,而E组微拟球藻的SOD酶活性最高,在培养至第10天时,各组的抗氧化酶活性均较第5天时有所降低;微拟球藻细胞内硒含量随着添加亚硒酸钠质量浓度增加而增加,但浓度过高微拟球藻的富集能力也会有所下降。研究表明,添加低浓度的亚硒酸钠能够促进微拟球藻的生长和抗氧化酶活性并有效富集硒,本试验条件下,微拟球藻培养的适宜亚硒酸钠添加浓度为6 mg/L。
To investigate the effects of different concentrations of sodium selenite on the growth, antioxidant enzyme activities, and selenium content of Nannochloropsis oceanica, the experiment was designed with five treatment groups: 0 (A, control), 3 (B), 6 (C), 12 (D), and 24 mg/L (E), each with three replicates. The cell density, relative growth rate, antioxidant enzyme activities (catalase, CAT; glutathione peroxidase, GSH-Px; and (superoxide dismutase, SOD), and selenium content of N. oceanica were measured periodically. The results showed that when the initial inoculation cell density of N. oceanica was 5 × 106 cells/mL, from the third day of cultivation until the end, the cell density in the group C was significantly higher than that in the other groups (P < 0.05), while the cell density in the group E was significantly lower than that in the other groups (P < 0.05). The relative growth rate of N. oceanica in the group C was significantly higher than that in the groups A, D, and E (P < 0.05). The addition of sodium selenite significantly increased the antioxidant enzyme activities of N. oceanica (P < 0.05). On the fifth day of cultivation, the CAT and GSH-Px activities in the group C were the highest, while the SOD activity in the group E was the highest. By the tenth day of cultivation, the antioxidant enzyme activities in all groups had decreased compared to the fifth day. The intracellular selenium content of N. oceanica increased with the increasing
[1] | Mangiapane, E., Pessione, A. and Pessione, E. (2014) Selenium and Selenoproteins: An Overview on Different Biological Systems. Current Protein & Peptide Science, 15, 598-607. https://doi.org/10.2174/1389203715666140608151134 |
[2] | 李欣泽, 石博文. 硒对肉鸡生长性能、羽毛生长及肉质的影响[J]. 北方牧业, 2020(5): 28. |
[3] | 李若铭, 孔祎頔, 王桂芹. 微量元素硒的生物学功能及其对水产动物的影响的研究进展[J]. 饲料工业, 2021, 42(6): 9-14. |
[4] | Liu, Z., Qu, Y., Wang, J. and Wu, R. (2016) Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κB Signaling Pathway. Biological Trace Element Research, 172, 465-473. https://doi.org/10.1007/s12011-015-0589-8 |
[5] | Banikazemi, Z., Haji, H.A., Mohammadi, M., Taheripak, G., Iranifar, E., Poursadeghiyan, M., et al. (2017) Diet and Cancer Prevention: Dietary Compounds, Dietary Micrornas, and Dietary Exosomes. Journal of Cellular Biochemistry, 119, 185-196. https://doi.org/10.1002/jcb.26244 |
[6] | Fernandes, A.P. and Gandin, V. (2015) Selenium Compounds as Therapeutic Agents in Cancer. Biochimica et Biophysica Acta (BBA)—General Subjects, 1850, 1642-1660. https://doi.org/10.1016/j.bbagen.2014.10.008 |
[7] | Alehagen, U., Aaseth, J., Alexander, J. and Johansson, P. (2018) Still Reduced Cardiovascular Mortality 12 Years after Supplementation with Selenium and Coenzyme Q10 for Four Years: A Validation of Previous 10-Year Follow-Up Results of a Prospective Randomized Double-Blind Placebo-Controlled Trial in Elderly. PLOS ONE, 13, e0193120. https://doi.org/10.1371/journal.pone.0193120 |
[8] | Harsij, M., Gholipour Kanani, H. and Adineh, H. (2020) Effects of Antioxidant Supplementation (Nano-Selenium, Vitamin C and E) on Growth Performance, Blood Biochemistry, Immune Status and Body Composition of Rainbow Trout (Oncorhynchus mykiss) under Sub-Lethal Ammonia Exposure. Aquaculture, 521, Article ID: 734942. https://doi.org/10.1016/j.aquaculture.2020.734942 |
[9] | Xu, Z.N., Lin, Z.Q., Zhao, G.S. and Guo, Y.B. (2023) Biogeochemical Behavior of Selenium in Soil-Air-Water Environment and Its Effects on Human Health. International Journal of Environmental Science and Technology, 21, 1159-1180. https://doi.org/10.1007/s13762-023-05169-0 |
[10] | 黄丽. 富硒螺旋藻的生物分布及其含硒蛋白的抗炎症活性研究[D]: [硕士学位论文]. 南宁: 广西大学, 2020. |
[11] | 张元博, 田娇娇, 叶凌志, 等. 几种环境因子对微拟球藻营养物质积累的影响[J]. 核农学报, 2022, 36(6): 1273-1283. |
[12] | O. Guimarães, B., de Boer, K., Gremmen, P., Drinkwaard, A., Wieggers, R., H. Wijffels, R., et al. (2021) Selenium Enrichment in the Marine Microalga Nannochloropsis oceanica. Algal Research, 59, Article ID: 102427. https://doi.org/10.1016/j.algal.2021.102427 |
[13] | 赵现伟. 蛋白核小球藻硒营养强化特性研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2024. |
[14] | 倪婕, 余炼, 唐亚倩, 等. 亚硒酸钠对蛋白核小球藻生长及生物转化的影响[J]. 现代食品科技, 2019, 35(11): 176-181. |
[15] | 朱葆华, 沈含, 朱召霞, 等. 硒对钝顶螺旋藻生长及固碳速率的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(11): 21-28. |
[16] | Sun, X., Zhong, Y., Huang, Z. and Yang, Y. (2014) Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments. PLOS ONE, 9, e112270. https://doi.org/10.1371/journal.pone.0112270 |
[17] | 邓雨萍, 倪婕, 张梦菲, 等. 富硒蛋白核小球藻体外抗氧化活性及其对红细胞氧化损伤的保护作用[J]. 食品科技, 2022, 47(12): 7-14. |
[18] | 覃宝利, 王宣朋, 单金峰, 等. 亚硒酸钠对蛋白核小球藻生长及抗氧化酶活性的影响[J]. 大连海洋大学学报, 2020, 35(6): 838-846. |
[19] | 叶力玮, 李锐龙, 赖俊翔, 等. 硒浓度对紫球藻的有机硒转化能力及生长的影响[J]. 食品安全质量检测学报, 2022, 13(21): 7028-7034. |
[20] | 姜晓玉. 硒对盐藻的生理影响及富硒盐藻蛋白提取初步研究[D]: [硕士学位论文]. 南宁: 广西大学, 2023. |