|
Sustainable Energy 2025
CO2物理作用对甲烷扩散火焰燃烧特性影响
|
Abstract:
本文以天然气的烟气再循环技术为研究背景,主要研究CO2气体的加入对CH4/空气同轴射流层流扩散燃烧火焰影响。采用数值模拟方法,对CO2气体的物理特性对火焰温度,CH4反应速率峰值和火焰尺寸的影响分别进行分析,为深入研究CH4火焰燃烧特性提供基础模拟理论的分析依据。研究结果显示,当空气中的部分N2被CO2代替后,火焰的燃烧温度会随着当量比的增加而降低,随着CO2体积分数的增加而降低,并且无论是在贫燃料燃烧还是在富燃料燃烧,这种变化趋势保持一致。而CO2的加入因其自身的高比重使得CO2进入燃烧室后具有较大的分子动量,更有利于燃料与氧化剂混合发生反应,因此使得CH4/空气反应速率的峰值升高,但并没有提高CH4的燃烧效率。火焰尺寸不因CO2的加入而发生变化,但随着当量比的增加而减小。
This study investigates the influence of CO? addition on CH?/air coaxial jet laminar diffusion flames within the context of flue gas recirculation (FGR) technology for natural gas combustion. Numerical simulations were conducted to analyze the effects of CO? physical properties on flame temperature, peak CH? reaction rate, and flame dimensions, providing foundational theoretical insights for further research on CH? flame combustion characteristics. Results indicate that substituting N? in air with CO? leads to a reduction in flame temperature, which decreases with both increasing equivalence ratio and CO? volume fraction. This trend remains consistent under both fuel-lean and fuel-rich combustion conditions. The introduction of CO? enhances the peak CH? reaction rate due to its higher molecular momentum, which promotes fuel-oxidizer mixing. However, no significant improvement in CH? combustion efficiency is observed. Flame dimensions remain unaffected by CO? addition but decrease with increasing equivalence ratio.
[1] | 刘敏飞, 朱彤, 张鹤声. 高温空气燃烧技术的特点及其应用前景[J]. 能源研究与信息, 2001, 17(1): 27-35. |
[2] | 吴道洪. 大力推广高效节能、低污染燃烧器[J]. 能源研究与应用, 2000(2): 36-37. |
[3] | Wolsky, A.M. (1986) A New Method of CO2 Recovery. 79th Annual Meeting of the Air Pollution Control Association, Minneapolis, 22-27 June 1986, 1-3. |
[4] | 刘丽珍. 浓淡燃烧低NOX燃烧器研制的探讨[J]. 煤气与热力, 2000, 20(5): 349-351+359. |
[5] | 周跃花. 燃烧时NOX的转化与控制[J]. 西安联合大学学报, 2000, 3(4): 70-74. |
[6] | 毕玉森. 低氮氧化物燃烧技术的发展状况[J]. 热力发电, 2000, 29(2): 2-9. |
[7] | Brenner, G., Pickenäcker, K., Pickenäcker, O., Trimis, D., Wawrzinek, K. and Weber, T. (2000) Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media. Combustion and Flame, 123, 201-213. https://doi.org/10.1016/s0010-2180(00)00163-2 |
[8] | 赵然. 高浓度CO2气氛下NO释放及火焰特性的动力学研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2011. |
[9] | 张双. 氢气和稀释气体对甲烷/空气预混层流火焰燃烧特性的影响研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2014. |
[10] | 徐琼辉, 詹杰民. 预混燃烧中火焰长度的变化规律研究[J]. 中山大学学报, 2008, 47(5): 37-43. |
[11] | 徐琼辉, 詹杰民. 非预混燃烧中喷嘴结构布局影响火焰长度的变化[J]. 热能动力工程, 2009, 24(2): 216-227. |
[12] | 徐旭常, 周力行.燃烧技术手册[M]. 北京: 化学工业出版社, 2007: 52. |
[13] | Barllts, H. (1998) Simulation of Pollutant Formation in a Gas Turbine Combustor Using Unsteady Flamelets. Symposium (International) on Combustion, 63, 269-281. |
[14] | 张鹏. 稀释气体对甲烷/空气火焰燃烧特性影响的研究与分析[D]: [硕士学位论文]. 北京: 北京工业大学, 2016. |