|
Pure Mathematics 2025
概率论与随机过程融入现代控制理论分析的研究
|
Abstract:
随着人工智能技术的快速发展,机器学习、强化学习与深度学习等前沿领域均依赖概率论与随机过程的数学基础,这一学科发展趋势为现代控制理论的研究提供了重要启示:本文基于概率论与随机过程知识框架,融合现代数据分析技术,从多角度对系统动力学行为及矩阵统计特性进行了深入且更为精准的研究与分析。通过这一方法,提升了对复杂系统演化规律和随机结构特性理解的准确性和系统性。此外基于统计学理论,结合神经网络算法的强大拟合与泛化能力,对随机非线性动态系统进行了精确的辨识与建模。通过融合传统统计方法与现代智能计算技术,进一步提升了对复杂动态行为的捕捉能力与建模精度。所提出的方法不仅有助于系统深入理解现代控制理论的基本框架与核心思想,同时也显著提升了应用控制理论分析复杂问题和提出解决方案的能力。
With the rapid development of artificial intelligence technology, many frontier fields such as machine learning, reinforcement learning, and deep learning all rely on the mathematical basis of probability theory and stochastic processes. This disciplinary development trend provides important inspirations for the research of modern control theory: Based on the knowledge framework of probability theory and stochastic processes, and integrating modern data analysis techniques, this paper conducts in-depth and more precise research and analysis on the dynamic behavior of the system and the statistical characteristics of matrices from multiple perspectives. Through this method, the accuracy and systematicness of understanding the evolution laws and random structural characteristics of complex systems have been enhanced. Furthermore, based on statistical theory and combined with the powerful fitting and generalization capabilities of neural network algorithms, precise identification and modeling of stochastic nonlinear dynamic systems have been carried out. By integrating traditional statistical methods with modern intelligent computing technologies, the ability to capture complex dynamic behaviors and the modeling accuracy have been further enhanced. The proposed method not only helps the system to deeply understand the basic framework and core ideas of modern control theory, but also significantly improves the ability to apply control theory to analyze complex problems and propose solutions.
[1] | 李冠宇. 隐马尔可夫模型及其在语音识别中的应用[J]. 科技风, 2011(23): 89-90. |
[2] | Merkatas, C. and Särkkä, S. (2022) System Identification Using Autoregressive Bayesian Neural Networks with Nonparametric Noise Models. Journal of Time Series Analysis, 44, 319-330. https://doi.org/10.1111/jtsa.12669 |
[3] | 高瑞松. 随机微分方程基于物理信息神经网络的生成方法[D]: [硕士学位论文]. 烟台: 烟台大学, 2024. |
[4] | 刘爽. 结合机器人应用的现代控制理论课程教学改革研究[J]. 高教学刊, 2024, 10(6): 136-139. |
[5] | 王立红. 任务驱动法在现代控制理论课程教学改革中的应用[J]. 辽宁工业大学学报(社会科学版), 2017, 19(5): 125-127+142. |
[6] | 张启敏, 马婧英, 王战平. 案例教学法在现代控制理论课程教学中的应用[J]. 科教导刊, 2020(6): 113-114. |
[7] | 陈晓锋, 庄巍, 伍超明, 等. 神经网络辅助卡尔曼滤波组合导航算法的现状与展望[J]. 机电工程技术, 2025, 54(2): 6-11. |
[8] | 任鸿燚, 刘翔宇, 咸甘玲, 等. 基于循环神经网络的自适应滤波方法及应用研究[J]. 振动与冲击, 2024, 43(7): 327-333. |
[9] | 贾荣丛, 高坤. 基于OBE的现代控制理论课程教学实践[J]. 电子技术, 2024, 53(1): 420-421. |
[10] | 赵杰. 基于RLS的RNN强化学习算法研究[D]: [硕士学位论文]. 海口: 海南大学, 2021. |
[11] | Wolterink, J.M., Leiner, T., Viergever, M.A. and Isgum, I. (2017) Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Transactions on Medical Imaging, 36, 2536-2545. https://doi.org/10.1109/tmi.2017.2708987 |
[12] | 田思庆, 杜云明, 赵化启, 等. 机械工程领域硕士研究生“现代控制理论”课程教学与思政建设研究[J]. 工业和信息化教育, 2023(9): 90-94. |
[13] | 王建宏, 叶景贞, 温如春. 现代控制理论课程目标的设计[J]. 电子技术, 2022, 51(12): 104-105. |