全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

茉莉酸激素与微生物互作研究进展
Research Progress on Jasmonic Acid Hormone and Microbe Interaction

DOI: 10.12677/amb.2025.142008, PP. 59-65

Keywords: 茉莉酸,微生物,互作
Jasmonic Acid
, Microbes, Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

茉莉酸(JA)作为一种重要的植物激素,在植物生长发育以及应对生物和非生物胁迫中发挥着关键作用。本文综述了茉莉酸的合成方式、信号传导机制、激素功能以及与微生物的互作等方面的最新研究进展,旨在为深入理解茉莉酸在植物生理过程中的作用提供理论依据。
Jasmonic acid (JA), a key plant hormone, is crucial for plant growth, development, and stress responses. This paper reviews the latest studies on JA’s biosynthesis, signaling pathways, functions, and microbe interactions, offering a theoretical foundation for understanding its role in plant physiological processes.

References

[1]  Ali, M.S. and Baek, K. (2020) Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. International Journal of Molecular Sciences, 21, Article 621.
https://doi.org/10.3390/ijms21020621

[2]  Cui, J., Sa, E., Wei, J., Fang, Y., Zheng, G., Wang, Y., et al. (2024) The Truncated Peptide AtPEP1(9-23) Has the Same Function as AtPEP1(1-23) in Inhibiting Primary Root Growth and Triggering of ROS Burst. Antioxidants, 13, Article 549.
https://doi.org/10.3390/antiox13050549

[3]  Safaeizadeh, M. and Boller, T. (2019) Differential and Tissue-Specific Activation Pattern of the AtPROPEP and AtPEPR Genes in Response to Biotic and Abiotic Stress in Arabidopsis thaliana. Plant Signaling & Behavior, 14, e1590094.
https://doi.org/10.1080/15592324.2019.1590094

[4]  Carvalhais, L.C., Schenk, P.M. and Dennis, P.G. (2017) Jasmonic Acid Signalling and the Plant Holobiont. Current Opinion in Microbiology, 37, 42-47.
https://doi.org/10.1016/j.mib.2017.03.009

[5]  Jarocka-Karpowicz, I. and Markowska, A. (2021) Therapeutic Potential of Jasmonic Acid and Its Derivatives. International Journal of Molecular Sciences, 22, Article 8437.
https://doi.org/10.3390/ijms22168437

[6]  Nie, R., Chen, D., Hu, T., Zhang, S. and Qu, G. (2024) A Review: The Role of Jasmonic Acid in Tomato Flower and Fruit Development. Plant Molecular Biology Reporter.
https://doi.org/10.1007/s11105-024-01505-x

[7]  Liu, H. and Timko, M.P. (2021) Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 22, Article 2914.
https://doi.org/10.3390/ijms22062914

[8]  Yang, L., Zhou, Y., Guo, L., Yang, L., Wang, J., Liang, C., et al. (2022) The Effect of Banana Rhizosphere Chemotaxis and Chemoattractants on Bacillus velezensis LG14-3 Root Colonization and Suppression of Banana Fusarium Wilt Disease. Sustainability, 15, Article 351.
https://doi.org/10.3390/su15010351

[9]  Nawfetrias, W., Devy, L., Esyanti, R.R. and Faizal, A. (2024) Phyllanthus Lignans: A Review of Biological Activity and Elicitation. Horticulturae, 10, Article 195.
https://doi.org/10.3390/horticulturae10020195

[10]  Raza, A., Charagh, S., Zahid, Z., Mubarik, M.S., Javed, R., Siddiqui, M.H., et al. (2020) Jasmonic Acid: A Key Frontier in Conferring Abiotic Stress Tolerance in Plants. Plant Cell Reports, 40, 1513-1541.
https://doi.org/10.1007/s00299-020-02614-z

[11]  Chen, S., Tao, Z., Shen, Y., Yang, R., Yan, S., Chen, Z., et al. (2024) Magnaporthe oryzae Infection Triggers Rice Resistance to Brown Planthopper through the Influence of Jasmonic Acid on the Flavonoid Biosynthesis Pathway. Insect Science, 32, 243-259.
https://doi.org/10.1111/1744-7917.13378

[12]  Ma, J., Morel, J., Riemann, M. and Nick, P. (2022) Jasmonic Acid Contributes to Rice Resistance against Magnaporthe oryzae. BMC Plant Biology, 22, Article No. 601.
https://doi.org/10.1186/s12870-022-03948-4

[13]  de Torres Zabala, M., Zhai, B., Jayaraman, S., Eleftheriadou, G., Winsbury, R., Yang, R., et al. (2015) Novel JAZ Co‐operativity and Unexpected JA Dynamics Underpin Arabidopsis Defence Responses to Pseudomonas syringae Infection. New Phytologist, 209, 1120-1134.
https://doi.org/10.1111/nph.13683

[14]  Panda, S.K. and Das, S. (2024) Potential of Plant Growth-Promoting Microbes for Improving Plant and Soil Health for Biotic and Abiotic Stress Management in Mangrove Vegetation. Reviews in Environmental Science and Bio/Technology, 23, 801-837.
https://doi.org/10.1007/s11157-024-09702-6

[15]  Tyagi, A., Lama Tamang, T., Kashtoh, H., Mir, R.A., Mir, Z.A., Manzoor, S., et al. (2024) A Review on Biocontrol Agents as Sustainable Approach for Crop Disease Management: Applications, Production, and Future Perspectives. Horticulturae, 10, Article 805.
https://doi.org/10.3390/horticulturae10080805

[16]  Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G.S., Meena, M., et al. (2023) Soil Microbiome: Diversity, Benefits and Interactions with Plants. Sustainability, 15, Article 14643.
https://doi.org/10.3390/su151914643

[17]  Ranjan, A., Rajput, V.D., Prazdnova, E.V., Gurnani, M., Sharma, S., Bhardwaj, P., et al. (2024) Augmenting Abiotic Stress Tolerance and Root Architecture: The Function of Phytohormone-Producing PGPR and Their Interaction with Nanoparticles. South African Journal of Botany, 167, 612-629.
https://doi.org/10.1016/j.sajb.2024.02.041

[18]  Lv, Q., Chi, B., He, N., Zhang, D., Dai, J., Zhang, Y., et al. (2023) Cotton-Based Rotation, Intercropping, and Alternate Intercropping Increase Yields by Improving Root-Shoot Relations. Agronomy, 13, Article 413.
https://doi.org/10.3390/agronomy13020413

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133