|
预应力混凝土连续刚构桥梁施工监控技术分析与有限元模拟研究
|
Abstract:
为确保预应力混凝土连续刚构桥梁在施工阶段的结构安全性和合理性,本文首先对桥梁进行了长达两年的施工监控。随后,根据监控数据,对实测的桥梁线形和应力变化情况与有限元模拟值进行了详细对比分析,并分析了承台的沉降结果和温度观测数据。研究结果表明:在施工阶段,实测的桥梁线形与有限元模拟值高度一致,相关性系数达到0.99;实测的应力结果与有限元模拟值相符,最大偏差仅为1.96 MPa,并且未观察到拉应力的出现;承台在观测期间内表现出较小的沉降量,所有观测值均在10 mm以内,并且沉降量呈现逐渐减缓的趋势;混凝土温度表现出与气温类似的逐时周期变化,混凝土温度极值的出现时间略滞后于气温,通常在凌晨7时左右达到最低点,滞后时间约为1.5小时;虽然混凝土温度随气温波动,但其日变化幅度远小于气温的变化幅度,这主要归因于混凝土的热惰性特性。此外,本文对于预应力混凝土连续刚构桥梁的施工管理和监控提供了重要的实测与模拟数据,进一步验证了有限元模拟方法在工程实践中的有效性和准确性。
To ensure the structural safety and rationality of prestressed concrete continuous rigid frame bridges during the construction phase, this study first conducted a two-year construction monitoring of the bridge. Subsequently, based on monitoring data, a detailed comparative analysis was conducted between the measured bridge alignment and stress changes and the finite element simulation values, and the settlement results and temperature observation data of the bearing platform were analyzed. The research results indicate that during the construction phase, the measured bridge alignment is highly consistent with the finite element simulation values, with a correlation coefficient of 0.99. The measured stress results are consistent with the finite element simulation values, with a maximum deviation of only 1.96 MPa, and no tensile stress was observed. During the observation period, the abutment showed a small settlement, with all observed values within 10 mm, and the settlement showed a gradually decreasing trend. The temperature of concrete exhibits a periodic change similar to that of air temperature, with the appearance of the extreme temperature of concrete slightly lagging behind the temperature, usually reaching its lowest point around 7 a.m., with a lag time of about 1.5 hours. Although the temperature of concrete fluctuates with temperature, its daily variation is much smaller than that of temperature, which is mainly attributed to the thermal inertness characteristics of concrete. In addition, this article provides important measured and simulated data for the construction management and monitoring of prestressed concrete continuous rigid frame bridges, further verifying the effectiveness and accuracy of the finite element simulation method in engineering practice.
[1] | 中国交通运输年鉴2022[M]. 北京: 中国交通年鉴社, 2022. |
[2] | 王雪锋, 王伟民. 多跨连续刚构桥合龙方案优化分析[J]. 建筑机械, 2024(5): 89-93+97. |
[3] | 王俯标. 多跨预应力混凝土刚构—连续梁组合桥施工监控与仿真分析[D]: [硕士学位论文]. 重庆: 重庆大学, 2009. |
[4] | 王益坚, 司雨楠, 梁亚华. 反向芬克式桁架桥施工分析与监控技术[J]. 浙江建筑, 2024, 41(3): 40-45. |
[5] | 周先念, 卞佳, 朱帆. 人字形异形塔柱钢混组合梁斜拉桥施工监控技术[J]. 公路, 2024(6): 128-133. |
[6] | 王柏荣. 双塔双索面混合-组合梁斜拉桥施工监控仿真分析[J]. 价值工程, 2024, 43(15): 152-155. |
[7] | 肖政, 郭斐. 大跨径预应力混凝土连续刚构桥施工监控探讨[J]. 交通世界, 2024(12): 113-115. |
[8] | 王忠彬. 武汉鹦鹉洲长江大桥上部结构施工监控技术[J]. 桥梁建设, 2018, 48(1): 100-105. |
[9] | 李清泉, 陈睿哲, 涂伟, 等. 基于惯性相机的大跨度桥梁线形形变实时测量方法[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1834-1843. |
[10] | 刘建琦. 大跨径连续刚构桥施工控制及敏感性分析[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2015. |
[11] | 中华人民共和国交通运输部. JTG F80/1-2004公路工程质量检验评定标准第一册 土建工程[S]. 北京: 人民交通出版社, 2004. |
[12] | 宋士新. 大跨度连续刚构桥梁施工控制关键问题分析与研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2012. |
[13] | 中华人民共和国交通部. JTG D63-2007公路桥涵地基与基础设计规范[S]. 北京: 人民交通出版社, 2007. |