|
胡椒碱通过调控H19/miR-29b通路改善高糖低氧诱导的视网膜色素上皮细胞损伤
|
Abstract:
目的:研究胡椒碱对视网膜色素上皮(retinal pigment epithelium, RPE)细胞在高糖 + 低氧条件下的保护作用机制。方法:高糖(25 mM)及低氧(5% O2持续24小时)构建RPE细胞体外(D407细胞系)糖尿病视网膜病变模型。实验主要分为对照组、高糖低氧模型组及胡椒碱干预组等。通过RT-qPCR及免疫荧光法检测lncRNA H19、miR-29b及VEGFA的mRNA或蛋白表达水平,使用划痕实验评估D407细胞的迁移能力。结果:与对照组相比,高糖及低氧条件下,D407细胞lncRNA H19及VEGFA mRNA的转录增加,miR-29b的转录减少;VEGFA蛋白表达增加;细胞迁移能力下降。使用胡椒碱干预后,可部分逆转上述现象。结论:胡椒碱可能通过lncRNA H19/miR-29b通路减轻高糖低氧诱导的RPE细胞损伤,为糖尿病视网膜病变的防治提供了新的潜在治疗策略。
Objective: To investigate the protective mechanism of piperine on retinal pigment epithelium (RPE) cells under conditions of high glucose and hypoxia. Methods: An in vitro model of diabetic retinopathy was established using the D407 cell line, subjected to high glucose (25 mM) and hypoxic conditions (5% O? for 24 hours). The experiments were primarily divided into a control group, a high glucose and hypoxia model group, and a piperine intervention group. The expression levels of long non-coding RNA (lncRNA) H19, microRNA-29b (miR-29b), and vascular endothelial growth factor A (VEGFA) mRNA were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR). VEGFA protein expression was assessed using immunofluorescence techniques. The migration ability of D407 cells was evaluated through a scratch assay. Results: Compared to the control group, the high glucose and low oxygen group exhibited increased expression levels of lncRNA H19 and VEGFA mRNA, decreased expression of miR-29b, elevated VEGFA protein expression, and reduced cell migration. Treatment with piperine partially reversed these effects. Conclusion: Piperine may mitigate high glucose and hypoxia-induced damage in RPE cells via the lncRNA H19/miR-29b pathway, offering a novel potential therapeutic strategy for the prevention and treatment of diabetic retinopathy.
[1] | Renner, S., Dobenecker, B., Blutke, A., Zöls, S., Wanke, R., Ritzmann, M., et al. (2016) Comparative Aspects of Rodent and Nonrodent Animal Models for Mechanistic and Translational Diabetes Research. Theriogenology, 86, 406-421. https://doi.org/10.1016/j.theriogenology.2016.04.055 |
[2] | Yang, W., Lu, J., Weng, J., Jia, W., Ji, L., Xiao, J., et al. (2010) Prevalence of Diabetes among Men and Women in China. The New England Journal of Medicine, 362, 1090-101. https://doi.org/10.1056/NEJMc1004671 |
[3] | Mi, X., Yuan, T., Zhong, J., Ding, Y. and So, K. (2014) Choosing Preclinical Study Models of Diabetic Retinopathy: Key Problems for Consideration. Drug Design, Development and Therapy, 8, 2311-2319. https://doi.org/10.2147/dddt.s72797 |
[4] | Barrett, E.J., Liu, Z., Khamaisi, M., King, G.L., Klein, R., Klein, B.E.K., et al. (2017) Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. The Journal of Clinical Endocrinology & Metabolism, 102, 4343-4410. https://doi.org/10.1210/jc.2017-01922 |
[5] | Zhang, L., Dong, Y., Wang, Y., Gao, J., Lv, J., Sun, J., et al. (2019) Long Non‐Coding RNAs in Ocular Diseases: New and Potential Therapeutic Targets. The FEBS Journal, 286, 2261-2272. https://doi.org/10.1111/febs.14827 |
[6] | Gui, W., Zhu, W.F., Zhu, Y., Tang, S., Zheng, F., Yin, X., et al. (2020) LncRNAH19 Improves Insulin Resistance in Skeletal Muscle by Regulating Heterogeneous Nuclear Ribonucleoprotein A1. Cell Communication and Signaling, 18, Article No. 173. https://doi.org/10.1186/s12964-020-00654-2 |
[7] | Parvar, S.N., Mirzaei, A., Zare, A., Doustimotlagh, A.H., Nikooei, S., Arya, A., et al. (2022) Effect of Metformin on the Long Non-Coding RNA Expression Levels in Type 2 Diabetes: An in Vitro and Clinical Trial Study. Pharmacological Reports, 75, 189-198. https://doi.org/10.1007/s43440-022-00427-3 |
[8] | Alvarez, M.L. and DiStefano, J.K. (2013) The Role of Non-Coding Rnas in Diabetic Nephropathy: Potential Applications as Biomarkers for Disease Development and Progression. Diabetes Research and Clinical Practice, 99, 1-11. https://doi.org/10.1016/j.diabres.2012.10.010 |
[9] | Yang, J., Zhao, S. and Tian, F. (2019) SP1‐Mediated LncRNA PVT1 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract via miR‐214‐3p/MMP2 Axis. Journal of Cellular and Molecular Medicine, 24, 554-561. https://doi.org/10.1111/jcmm.14762 |
[10] | Solà-Adell, C., Bogdanov, P., Hernández, C., Sampedro, J., Valeri, M., Garcia-Ramirez, M., et al. (2017) Calcium Dobesilate Prevents Neurodegeneration and Vascular Leakage in Experimental Diabetes. Current Eye Research, 42, 1273-1286. https://doi.org/10.1080/02713683.2017.1302591 |
[11] | Li, M., Li, H., Liu, X., Xu, D. and Wang, F. (2016) MicroRNA-29b Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells by Targeting AKT2. Experimental Cell Research, 345, 115-124. https://doi.org/10.1016/j.yexcr.2014.09.026 |
[12] | Tan, J., Xiao, A., Yang, L., Tao, Y., Shao, Y. and Zhou, Q. (2024) Diabetes and High-Glucose Could Upregulate the Expression of Receptor for Activated C Kinase 1 in Retina. World Journal of Diabetes, 15, 519-529. https://doi.org/10.4239/wjd.v15.i3.519 |
[13] | Lai, Y., Hu, D., Rosen, R., Sassoon, J., Chuang, L., Wu, K., et al. (2016) Hypoxia‐Induced Vascular Endothelial Growth Factor Secretion by Retinal Pigment Epithelial Cells Is Inhibited by Melatonin via Decreased Accumulation of Hypoxia‐inducible Factors‐1α Protein. Clinical & Experimental Ophthalmology, 45, 182-191. https://doi.org/10.1111/ceo.12802 |
[14] | Gao, X., Li, Y., Wang, H., Li, C. and Ding, J. (2016) Inhibition of HIF‐1α Decreases Expression of Pro‐Inflammatory IL‐6 and TNF‐α in Diabetic Retinopathy. Acta Ophthalmologica, 95, e746-e750. https://doi.org/10.1111/aos.13096 |
[15] | Yan, H., Yao, P., Hu, K., Li, X. and Li, H. (2021) Long Non‐Coding Ribonucleic Acid Urothelial Carcinoma‐Associated 1 Promotes High Glucose‐induced Human Retinal Endothelial Cells Angiogenesis through Regulating Micro‐Ribonucleic Acid‐624‐3p/Vascular Endothelial Growth Factor C. Journal of Diabetes Investigation, 12, 1948-1957. https://doi.org/10.1111/jdi.13617 |
[16] | Calado, S.M., Alves, L.S., Simão, S. and Silva, G.A. (2016) GLUT1 Activity Contributes to the Impairment of PEDF Secretion by the RPE. Molecular Vision, 22, 761-770. |
[17] | Li, Y., Chen, D., Sun, L., Wu, Y., Zou, Y., Liang, C., et al. (2019) Induced Expression of VEGFC, ANGPT, and EFNB2 and Their Receptors Characterizes Neovascularization in Proliferative Diabetic Retinopathy. Investigative Opthalmology & Visual Science, 60, 4084-4096. https://doi.org/10.1167/iovs.19-26767 |
[18] | Liu, Y., Zheng, Y., Zhou, Y., Liu, Y., Xie, M., Meng, W., et al. (2020) The Expression and Significance of mTORC1 in Diabetic Retinopathy. BMC Ophthalmology, 20, Article No. 297. https://doi.org/10.1186/s12886-020-01553-3 |
[19] | Kim, S., Jung, S., Lee, Y., Han, J.Y., Choi, Y., Hong, H., et al. (2015) Dammarenediol-II Prevents VEGF-Mediated Microvascular Permeability in Diabetic Mice. Phytotherapy Research, 29, 1910-1916. https://doi.org/10.1002/ptr.5480 |
[20] | Li, X., Lv, X., Li, Z., Li, C., Li, X., Xiao, J., et al. (2019) Long Noncoding RNA ASLNC07322 Functions in VEGF-C Expression Regulated by SMAD4 during Colon Cancer Metastasis. Molecular Therapy Nucleic Acids, 18, 851-862. https://doi.org/10.1016/j.omtn.2019.10.012 |
[21] | Lee, S.H., Kim, H.Y., Back, S.Y. and Han, H. (2017) Piperine-Mediated Drug Interactions and Formulation Strategy for Piperine: Recent Advances and Future Perspectives. Expert Opinion on Drug Metabolism & Toxicology, 14, 43-57. https://doi.org/10.1080/17425255.2018.1418854 |
[22] | Choi, S., Choi, Y., Choi, Y., Kim, S., Jang, J. and Park, T. (2013) Piperine Reverses High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Food Chemistry, 141, 3627-3635. https://doi.org/10.1016/j.foodchem.2013.06.028 |
[23] | Zhang, P., Zhou, Y., Tan, Y. and Gao, L. (2021) Protective Effects of Piperine on the Retina of Mice with Streptozotocin-Induced Diabetes by Suppressing HIF-1/VEGFA Pathway and Promoting PEDF Expression. International Journal of Ophthalmology, 14, 656-665. https://doi.org/10.18240/ijo.2021.05.04 |
[24] | Guo, J., Chen, Y., Xu, J., Li, L., Dang, W., Xiao, F., et al. (2022) Long Noncoding RNA PVT1 Regulates the Proliferation and Apoptosis of ARPE-19 Cells in Vitro via the miR-1301-3p/KLF7 Axis. Cell Cycle, 21, 1590-1598. https://doi.org/10.1080/15384101.2022.2058839 |