|
Bioprocess 2025
杯棕鞭藻对微囊藻的摄食与毒素降解作用
|
Abstract:
目的:研究在高密度比(1:50)下杯棕鞭藻对铜绿微囊藻的摄食效率、降解藻毒素(MC-LR)效率以及该过程中的生理代谢变化。方法:通过室内微囊藻和杯棕鞭藻共培养试验,测定二者在不同时期密度变化以及谷胱甘肽(GSH)含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性。结果:本研究发现并分离纯化一株可以摄食微囊藻的棕鞭藻,经形态学特征鉴定为Poterioochromonas属的杯棕鞭藻Poterioochromonas malhamensis,通过室内实验发现,杯棕鞭藻在降解过程中通过增加GSH含量、SOD和CAT活性,加速藻毒素降解速率并减少活性氧(ROS)和MC产生的氧化损伤。结论:杯棕鞭藻可以通过改变其自身生理代谢过程来摄食微囊藻并降解藻毒素,以上研究对合理利用生物策略控制微囊藻水华具有关键指导意义。
Objective: The study investigates the grazing efficiency of Poterioochromonas malhamensis on Microcystis aeruginosa under high density ratio (1:50), its microcystin (MC-LR) degradation efficiency, and the changes of physiological metabolic during this process. Methods: Co-culture experiments of Microcystis aeruginosa and Poterioochromonas malhamensis were conducted under laboratory conditions. Temporal variations in cell densities, glutathione (GSH) content, as well as superoxide dismutase (SOD) and catalase (CAT) activities were measured. Results: A strain of Poterioochromonas malhamensis capable of grazing Microcystis aeruginosa was isolated and purified, which was morphologically identified as Poterioochromonas malhamensis. Laboratory experiments revealed that during the degradation process, Poterioochromonas malhamensis enhanced GSH content and increased SOD and CAT activities, thereby accelerating MC degradation rate and mitigating oxidative damage caused by reactive oxygen species (ROS) and MC. Conclusion: Poterioochromonas malhamensis can graze Microcystis aeruginosa and degrade algal toxins by modulating its physiological metabolic processes. These findings provide critical guidance for developing biological strategies to control blooms of Microcystis aeruginosa.
[1] | Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H. and Visser, P.M. (2018) Cyanobacterial Blooms. Nature Reviews Microbiology, 16, 471-483. https://doi.org/10.1038/s41579-018-0040-1 |
[2] | 姜锦林, 宋睿, 任静华, 等. 蓝藻水华衍生的微囊藻毒素污染及其对水生生物的生态毒理学研究[J]. 化学进展, 2011, 23(1): 246-253. |
[3] | Badar, M., Batool, F., Khan, S., et al. (2017) Effects of Microcystins Toxins Contaminated Drinking Water on Hepatic Problems in Animals (Cows and Buffalos) and Toxins Removal Chemical Method. Buffalo Bulletin, 36, 43-55. |
[4] | Smith, J.E., Widmer, J.A., Wolny, J.L., Dunn, L.L., Stocker, M.D., Hill, R.L., et al. (2024) Persistence of Microcystin in Three Agricultural Ponds in Georgia, USA. Toxins, 16, Article No. 482. https://doi.org/10.3390/toxins16110482 |
[5] | Chen, S., Xie, W., Lin, X., Zhou, H., Teng, S., Jiang, Z., et al. (2024) Controlling Toxic Microcystis Blooms: The Power of a Novel Microalgal Predator Poteriospumella lacustris in Water Safety Improvement. Journal of Cleaner Production, 441, Article ID: 141011. https://doi.org/10.1016/j.jclepro.2024.141011 |
[6] | Smith, V.H. (1983) Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton. Science, 221, 669-671. https://doi.org/10.1126/science.221.4611.669 |
[7] | Holen, D.A. (1994) Physiological Studies of Mixotrophy in the Algal Flagellate Poterioochromonas malhamensis (Chryso-Phyceae) Using Batch and Continuous Cultures. |
[8] | Tang, J., Li, J., Mo, Y., Safaei Khorram, M., Chen, Y., Tang, J., et al. (2020) Light Absorption and Emissions Inventory of Humic-Like Substances from Simulated Rainforest Biomass Burning in Southeast Asia. Environmental Pollution, 262, Article ID: 114266. https://doi.org/10.1016/j.envpol.2020.114266 |
[9] | 张露. 原生动物棕鞭毛虫清除有毒微囊藻的环境效应及其降解藻毒素机制的研究[D]: [博士学位论文]. 南京: 南京师范大学, 2019. |
[10] | 陈嫚, 马明洋, 王红霞, 等. 混合营养型马勒姆杯棕鞭藻的重描述及其系统发育分析[J]. 水生生物学报, 2020, 44(5): 1130-1142. |
[11] | Yan, H., Li, Q., Chen, B., Shi, M. and Zhang, T. (2022) Identification and Feeding Characteristics of the Mixotrophic Flagellate Poterioochromonas malhamensis, a Microalgal Predator Isolated from Planting Water of Pontederia cordata. Environmental Science and Pollution Research, 29, 40599-40611. https://doi.org/10.1007/s11356-022-18614-3 |
[12] | Zhang, L., Lyu, K., Wang, N., Gu, L., Sun, Y., Zhu, X., et al. (2018) Transcriptomic Analysis Reveals the Pathways Associated with Resisting and Degrading Microcystin in Ochromonas. Environmental Science & Technology, 52, 11102-11113. https://doi.org/10.1021/acs.est.8b03106 |