全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝细胞癌中外泌体microRNA改变肿瘤微环境影响治疗及预后的研究进展
Advances in the Study of Exosomal MicroRNAs in Hepatocellular Carcinoma

DOI: 10.12677/md.2025.153036, PP. 275-282

Keywords: 肝细胞癌,microRNA,肿瘤微环境,免疫,细胞,基因,脂质
Hepatocellular Carcinoma
, microRNA, Tumor Microenvironment, Immune, Cell, Gene, Lipid

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,肝细胞癌(HCC)已成为全球范围内最常见、最致命且最具侵袭性的肝脏恶性肿瘤之一。肝细胞癌患者拥有多种治疗选项,包括肝移植、手术切除、经皮消融、放疗以及经动脉和全身治疗。目前,免疫疗法也逐渐被引入肝细胞癌的治疗领域。尽管肝细胞癌的治疗方法持续进步,但肝癌的死亡率仍在逐年上升,预后情况亦令人担忧。微小RNA (microRNA)已成为近年来的研究焦点,它在生物体内广泛分布,作为生物标志物和治疗靶点参与肝细胞癌的发生和发展过程,在肿瘤微环境(TME)中调节肿瘤免疫。本文综述了外泌体microRNA在肝细胞癌中细胞间通讯的作用网络,阐释了其与肿瘤微环境的相互作用如何影响肝癌的进展,并探讨了miRNA靶向脂质代谢相关酶对肝癌进展的影响,以及低氧诱导的外泌体如何作用于肝细胞癌,旨在突破microRNA在HCC诊断、治疗和预后方面的研究进展。
In recent years, hepatocellular carcinoma (HCC) has become one of the most common, deadly and aggressive liver malignancies worldwide. Patients with hepatocellular carcinoma have a variety of treatment options, including liver transplantation, surgical resection, percutaneous ablation, radiotherapy, and transarterial and systemic therapy. Immunotherapy is also now being introduced to the treatment of hepatocellular carcinoma. Despite continued advances in the treatment of hepatocellular carcinoma, the mortality rate of hepatocellular carcinoma continues to increase year after year, and the prognosis of hepatocellular carcinoma is of concern. MicroRNAs (microRNAs) have become a focus of research in recent years, which are widely distributed in organisms, participate in the process of hepatocellular carcinoma genesis and progression as biomarkers and therapeutic targets, and regulate tumor immunity in the tumor microenvironment (TME). In this paper, we reviewed the role network of exosomal microRNAs in intercellular communication in hepatocellular carcinoma, elucidated how their interactions with the tumor microenvironment affect hepatocellular carcinoma progression, and explored the effects of miRNA targeting of lipid metabolism-related enzymes on the progression of hepatocellular carcinoma, as well as how hypoxia-induced exosomes act in hepatocellular carcinoma, with the aim of breaking through the role of microRNAs in the diagnosis, treatment and prognosis of HCC Research progress in HCC diagnosis, treatment and prognosis.

References

[1]  Donne, R. and Lujambio, A. (2023) The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology, 77, 1773-1796.
https://doi.org/10.1002/hep.32740
[2]  Shi, T., Morishita, A., Kobara, H. and Masaki, T. (2021) The Role of Long Non-Coding RNA and Microrna Networks in Hepatocellular Carcinoma and Its Tumor Microenvironment. International Journal of Molecular Sciences, 22, Article 10630.
https://doi.org/10.3390/ijms221910630
[3]  Zhou, S., Yin, D., Hu, Z., Luo, C., Zhou, Z., Xin, H., et al. (2019) A Positive Feedback Loop between Cancer Stem‐Like Cells and Tumor‐Associated Neutrophils Controls Hepatocellular Carcinoma Progression. Hepatology, 70, 1214-1230.
https://doi.org/10.1002/hep.30630
[4]  Xu, Y., Luan, G., Liu, F., Zhang, Y., Li, Z., Liu, Z., et al. (2023) Exosomal miR-200b-3p Induce Macrophage Polarization by Regulating Transcriptional Repressor ZEB1 in Hepatocellular Carcinoma. Hepatology International, 17, 889-903.
https://doi.org/10.1007/s12072-023-10507-y
[5]  Wang, L., Yi, X., Xiao, X., Zheng, Q., Ma, L. and Li, B. (2022) Exosomal miR-628-5p from M1 Polarized Macrophages Hinders M6a Modification of circFUT8 to Suppress Hepatocellular Carcinoma Progression. Cellular & Molecular Biology Letters, 27, Article No. 106.
https://doi.org/10.1186/s11658-022-00406-9
[6]  Liu, G., Ouyang, X., Sun, Y., Xiao, Y., You, B., Gao, Y., et al. (2020) The miR-92a-2-5p in Exosomes from Macrophages Increases Liver Cancer Cells Invasion via Altering the AR/PHLPP/p-AKT/β-Catenin Signaling. Cell Death & Differentiation, 27, 3258-3272.
https://doi.org/10.1038/s41418-020-0575-3
[7]  Fei, Y., Wang, Z., Huang, M., Wu, X., Hu, F., Zhu, J., et al. (2023) miR‐155 Regulates m2 Polarization of Hepatitis B Virus‐Infected Tumour‐Associated Macrophages Which in Turn Regulates the Malignant Progression of Hepatocellular Carcinoma. Journal of Viral Hepatitis, 30, 417-426.
https://doi.org/10.1111/jvh.13809
[8]  Yu, H., Pan, J., Zheng, S., Cai, D., Luo, A., Xia, Z., et al. (2023) Hepatocellular Carcinoma Cell-Derived Exosomal Mir-21-5p Induces Macrophage M2 Polarization by Targeting RhoB. International Journal of Molecular Sciences, 24, Article 4593.
https://doi.org/10.3390/ijms24054593
[9]  Li, S., Hu, X., Yu, S., Yi, P., Chen, R., Huang, Z., et al. (2022) Hepatic Stellate Cell‐Released CXCL1 Aggravates HCC Malignant Behaviors through the MIR4435‐2HG/miR‐506‐3p/TGFB1 Axis. Cancer Science, 114, 504-520.
https://doi.org/10.1111/cas.15605
[10]  Feng, R., Cui, Z., Liu, Z. and Zhang, Y. (2020) Upregulated MicroRNA‐132 in T Helper 17 Cells Activates Hepatic Stellate Cells to Promote Hepatocellular Carcinoma Cell Migration in vitro. Scandinavian Journal of Immunology, 93, e13007.
https://doi.org/10.1111/sji.13007
[11]  Salah, R.A., Nasr, M.A., El-Derby, A.M., Abd Elkodous, M., Mohamed, R.H., El-Ekiaby, N., et al. (2022) Hepatocellular Carcinoma Cell Line-Microenvironment Induced Cancer-Associated Phenotype, Genotype and Functionality in Mesenchymal Stem Cells. Life Sciences, 288, Article 120168.
https://doi.org/10.1016/j.lfs.2021.120168
[12]  Chen, S., Liu, R., Wang, H. and Liu, Q. (2022) Hypoxia-Driven miR-1307-3p Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion by Modulating DAB2 Interacting Protein. Pathology-Research and Practice, 237, Article 154066.
https://doi.org/10.1016/j.prp.2022.154066
[13]  You, Y., Zou, M., Zhou, Z., Mao, L., Ran, T., Liu, Y., et al. (2019) Hypoxia-Induced Exosomes Promote Hepatocellular Carcinoma Proliferation and Metastasis via miR-1273f Transfer. Experimental Cell Research, 385, Article 111649.
https://doi.org/10.1016/j.yexcr.2019.111649
[14]  Li, M., Zhai, P., Mu, X., Song, J., Zhang, H. and Su, J. (2023) Hypoxic BMSC-Derived Exosomal miR-652-3p Promotes Proliferation and Metastasis of Hepatocarcinoma Cancer Cells via Targeting TNRC6A. Aging, 15, 12780-12793.
https://doi.org/10.18632/aging.205025
[15]  Fu, Y., Mackowiak, B., Feng, D., Lu, H., Guan, Y., Lehner, T., et al. (2023) MicroRNA-223 Attenuates Hepatocarcinogenesis by Blocking Hypoxia-Driven Angiogenesis and Immunosuppression. Gut, 72, 1942-1958.
https://doi.org/10.1136/gutjnl-2022-327924
[16]  Yang, Q., Tian, H., Guo, Z., Ma, Z. and Wang, G. (2023) The Role of Noncoding RNAs in the Tumor Microenvironment of Hepatocellular Carcinoma. Acta Biochimica et Biophysica Sinica, 55, 1697-1706.
https://doi.org/10.3724/abbs.2023231
[17]  Tian, X., Wang, C., Jin, X., Li, M., Wang, F., Huang, W., et al. (2019) Acidic Microenvironment Up-Regulates Exosomal miR-21 and miR-10b in Early-Stage Hepatocellular Carcinoma to Promote Cancer Cell Proliferation and Metastasis. Theranostics, 9, 1965-1979.
https://doi.org/10.7150/thno.30958
[18]  Qi, Y., Wang, H., Zhang, Q., Liu, Z., Wang, T., Wu, Z., et al. (2022) CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells, 11, Article 3857.
https://doi.org/10.3390/cells11233857
[19]  Wang, X., Sheng, W., Xu, T., Xu, J., Gao, R. and Zhang, Z. (2021) CircRNA Hsa_Circ_0110102 Inhibited Macrophage Activation and Hepatocellular Carcinoma Progression via miR-580-5p/PPARα/CCL2 Pathway. Aging, 13, 11969-11987.
https://doi.org/10.18632/aging.202900
[20]  Wu, S., Liu, S., Cao, Y., Chao, G., Wang, P. and Pan, H. (2022) Downregulation of ZC3H13 by miR-362-3p/miR-425-5p Is Associated with a Poor Prognosis and Adverse Outcomes in Hepatocellular Carcinoma. Aging, 14, 2304-2319.
https://doi.org/10.18632/aging.203939
[21]  Liu, C., Ren, C., Guo, L., Yang, C. and Yu, Q. (2023) Exosome-Mediated Circttll5 Transfer Promotes Hepatocellular Carcinoma Malignant Progression through miR-136-5p/KIAA1522 Axis. Pathology-Research and Practice, 241, Article 154276.
https://doi.org/10.1016/j.prp.2022.154276
[22]  Yuan, P., Song, J., Wang, F. and Chen, B. (2022) Exosome-Transmitted Circ_002136 Promotes Hepatocellular Carcinoma Progression by miR-19a-3p/RAB1A Pathway. BMC Cancer, 22, Article No. 1284.
https://doi.org/10.1186/s12885-022-10367-z
[23]  Zhou, X., Xu, H., Xu, C., Yan, Y., Zhang, L., Sun, Q., et al. (2022) Hepatocellular Carcinoma-Derived Exosomal miRNA-761 Regulates the Tumor Microenvironment by Targeting the SOCS2/JAK2/STAT3 Pathway. World Journal of Emergency Medicine, 13, 379-385.
https://doi.org/10.5847/wjem.j.1920-8642.2022.089
[24]  Winkler, I., Bitter, C., Winkler, S., Weichenhan, D., Thavamani, A., Hengstler, J.G., et al. (2019) Identification of PPAR γ-Modulated Mirna Hubs That Target the Fibrotic Tumor Microenvironment. Proceedings of the National Academy of Sciences, 117, 454-463.
https://doi.org/10.1073/pnas.1909145117
[25]  Zhou, L., Zhang, Q., Cheng, J., Shen, X., Li, J., Chen, M., et al. (2023) LncRNA SNHG1 Upregulates FANCD2 and G6PD to Suppress Ferroptosis by Sponging miR-199a-5p/3p in Hepatocellular Carcinoma. Drug Discoveries & Therapeutics, 17, 248-256.
https://doi.org/10.5582/ddt.2023.01035
[26]  Ye, Y., Guo, J., Xiao, P., Ning, J., Zhang, R., Liu, P., et al. (2020) Macrophages-Induced Long Noncoding RNA H19 Up-Regulation Triggers and Activates the miR-193b/MAPK1 Axis and Promotes Cell Aggressiveness in Hepatocellular Carcinoma. Cancer Letters, 469, 310-322.
https://doi.org/10.1016/j.canlet.2019.11.001
[27]  Shao, L., Ye, Q. and Jia, M. (2021) miR-130-3p Promotes MTX-Induced Immune Killing of Hepatocellular Carcinoma Cells by Targeting EPHB4. Journal of Healthcare Engineering, 2021, Article ID: 4650794.
https://doi.org/10.1155/2021/4650794
[28]  Nakano, T., Chen, C., Chen, I., Tseng, H., Chiang, K., Lai, C., et al. (2023) Overexpression of miR-4669 Enhances Tumor Aggressiveness and Generates an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Its Clinical Value as a Predictive Biomarker. International Journal of Molecular Sciences, 24, Article 7908.
https://doi.org/10.3390/ijms24097908
[29]  Wei, Q., Zhao, L., Jiang, L., Bi, J., Yu, Z., Zhao, L., et al. (2018) Prognostic Relevance of miR‐137 and Its Liver Microenvironment Regulatory Target Gene AFM in Hepatocellular Carcinoma. Journal of Cellular Physiology, 234, 11888-11899.
https://doi.org/10.1002/jcp.27855
[30]  Xu, Y., He, X., Deng, J., Xiong, L., Chen, B., Chen, J., et al. (2022) Ros-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4713518.
https://doi.org/10.1155/2022/4713518
[31]  Xu, M., Zhou, C., Weng, J., Chen, Z., Zhou, Q., Gao, J., et al. (2022) Tumor Associated Macrophages-Derived Exosomes Facilitate Hepatocellular Carcinoma Malignance by Transferring LncMMPA to Tumor Cells and Activating Glycolysis Pathway. Journal of Experimental & Clinical Cancer Research, 41, Article No. 253.
https://doi.org/10.1186/s13046-022-02458-3
[32]  Pope, E.D., Kimbrough, E.O., Vemireddy, L.P., Surapaneni, P.K., Copland, J.A. and Mody, K. (2019) Aberrant Lipid Metabolism as a Therapeutic Target in Liver Cancer. Expert Opinion on Therapeutic Targets, 23, 473-483.
https://doi.org/10.1080/14728222.2019.1615883
[33]  Hu, J.J., Liu, N.N., Song, D., et al. (2023) A Positive Feedback between Cholesterol Synthesis and the Pentose Phosphate Pathway Rather than Glycolysis Promotes Hepatocellular Carcinoma. Oncogene, 42, 2892-2904.
https://doi.org/10.1038/s41388-023-02757-9
[34]  Wang, B., Zhang, H., Chen, Y.F., Hu, L.Q., Tian, Y.Y., Tong, H.W., et al. (2022) Acyl‐CoA Thioesterase 9 Promotes Tumour Growth and Metastasis through Reprogramming of Fatty Acid Metabolism in Hepatocellular Carcinoma. Liver International, 42, 2548-2561.
https://doi.org/10.1111/liv.15409
[35]  Gouhar, S.A., Abo‐elfadl, M.T., Gamal‐Eldeen, A.M. and El‐Daly, S.M. (2021) Involvement of miRNAs in Response to Oxidative Stress Induced by the Steroidal Glycoalkaloid α‐Solanine in Hepatocellular Carcinoma Cells. Environmental Toxicology, 37, 212-223.
https://doi.org/10.1002/tox.23390
[36]  Li, H., Chen, Z., Zhang, Y., Yuan, P., Liu, J., Ding, L., et al. (2021) miR-4310 Regulates Hepatocellular Carcinoma Growth and Metastasis through Lipid Synthesis. Cancer Letters, 519, 161-171.
https://doi.org/10.1016/j.canlet.2021.07.029
[37]  Yu, X., Lin, Q., Wu, Z., Zhang, Y., Wang, T., Zhao, S., et al. (2020) ZHX2 Inhibits SREBP1c‐Mediated de novo Lipogenesis in Hepatocellular Carcinoma via miR‐24‐3p. The Journal of Pathology, 252, 358-370.
https://doi.org/10.1002/path.5530
[38]  Wang, H., Yin, W., Jiang, M., Han, J., Kuai, X., Sun, R., et al. (2023) Function and Biomedical Implications of Exosomal MicroRNAs Delivered by Parenchymal and Nonparenchymal Cells in Hepatocellular Carcinoma. World Journal of Gastroenterology, 29, 5435-5451.
https://doi.org/10.3748/wjg.v29.i39.5435
[39]  Gramantieri, L., Giovannini, C., Piscaglia, F. and Fornari, F. (2021) MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 369-385.
https://doi.org/10.2147/jhc.s268292
[40]  Han, Q., Wang, M., Dong, X., Wei, F., Luo, Y. and Sun, X. (2022) Non-Coding RNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Frontiers in Immunology, 13, Article 985815.
https://doi.org/10.3389/fimmu.2022.985815
[41]  Pascut, D., Pratama, M.Y., Vo, N.V.T., Masadah, R. and Tiribelli, C. (2020) The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal MicroRNAs and Their Clinical Implications. Cancers, 12, Article 823.
https://doi.org/10.3390/cancers12040823

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133