全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

癫痫诊疗新进展
New Advances in the Diagnosis and Treatment of Epilepsy

DOI: 10.12677/acm.2025.1561793, PP. 815-822

Keywords: 癫痫,癫痫发作,抗癫痫药物,癫痫手术,神经调控,生酮饮食
Epilepsy
, Seizuer, Anti-Epileptic Drug, Epilepsy Surgery, Neuromodulation, Ketogenic Diet

Full-Text   Cite this paper   Add to My Lib

Abstract:

癫痫是一种影响着各个年龄段的严重神经系统疾病,全球有超过7000万的人受到影响。针对癫痫的治疗方法,最主要的手段是药物治疗,对于耐药性癫痫,癫痫手术、神经调控技术和生酮饮食等治疗方法也得到应用。抗癫痫新靶点的研究发现和新型药物的开发、病灶定位精度的提升和手术治疗技术的进步、无创技术的应用、对生酮饮食治疗机制的研究和创新正在推动着癫痫治疗向着全面和精准的方向进步和发展。本文就癫痫的部分诊疗手段和机制及新进展进行综述。
Epilepsy is a serious neurological disorder that affects people of all ages and affects more than 70 million people worldwide. The mainstay of treatment for epilepsy is pharmacological therapy, and for drug-resistant epilepsy, treatments such as epilepsy surgery, neuromodulation techniques, and ketogenic diets have also been applied. The discovery of new antiepileptic targets and the development of novel drugs, the improvement of lesion localisation accuracy and the advancement of surgical treatment techniques, the application of non-invasive techniques, and the research and innovation on the therapeutic mechanism of the ketogenic diet are driving epilepsy treatment to progress and develop in the direction of comprehensiveness and precision. This article provides an overview of some of the diagnostic and therapeutic tools and mechanisms of epilepsy and new advances.

References

[1]  Qin, B., Wu, X. and Xu, J. (2014) Discussion on the Practical Clinical Definition of Epilepsy in 2014. Chinese Medical Journal, 94, 2161-2164.
[2]  Falco-Walter, J. (2020) Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology, 40, 617-623.
https://doi.org/10.1055/s-0040-1718719

[3]  王群, 翁诗雯, 杨华俊, 单伟. 回眸2023——癫痫诊疗研究进展[J]. 中华神经科杂志, 2024, 57(10): 1037-1044.
[4]  Waris, A., Siraj, M., Khan, A., Lin, J., Asim, M. and Alhumaydh, F.A. (2024) A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacology & Translational Science, 7, 3729-3757.
https://doi.org/10.1021/acsptsci.4c00494

[5]  朱翠, 刘廷涛, 刘学伍. 抗癫痫发作药物联合治疗的研究进展[J]. 中华神经科杂志, 2022, 55(12): 1442-1446.
[6]  Pong, A.W., Xu, K.J. and Klein, P. (2023) Recent Advances in Pharmacotherapy for Epilepsy. Current Opinion in Neurology, 36, 77-85.
https://doi.org/10.1097/wco.0000000000001144

[7]  Guerreiro, C.A.M. (2016) Epilepsy. Indian Journal of Medical Research, 144, 657-660.
https://doi.org/10.4103/ijmr.ijmr_1051_16

[8]  Kwan, P. and Brodie, M.J. (2000) Early Identification of Refractory Epilepsy. New England Journal of Medicine, 342, 314-319.
https://doi.org/10.1056/nejm200002033420503

[9]  Kwan, P., Arzimanoglou, A., Berg, A.T., Brodie, M.J., Allen Hauser, W., Mathern, G., et al. (2010) Definition of Drug Resistant Epilepsy: Consensus Proposal by the Ad Hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 51, 1069-1077.
https://doi.org/10.1111/j.1528-1167.2009.02397.x

[10]  Thijs, R.D., Surges, R., O’Brien, T.J. and Sander, J.W. (2019) Epilepsy in Adults. The Lancet, 393, 689-701.
https://doi.org/10.1016/s0140-6736(18)32596-0

[11]  Semah, F., Picot, M.-C., Adam, C., Broglin, D., Arzimanoglou, A., Bazin, B., et al. (1998) Is the Underlying Cause of Epilepsy a Major Prognostic Factor for Recurrence? Neurology, 51, 1256-1262.
https://doi.org/10.1212/wnl.51.5.1256

[12]  Jobst, B.C. and Cascino, G.D. (2015) Resective Epilepsy Surgery for Drug-Resistant Focal Epilepsy. JAMA, 313, 285-293.
https://doi.org/10.1001/jama.2014.17426

[13]  Wiebe, S., Blume, W.T., Girvin, J.P. and Eliasziw, M. (2001) A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy. New England Journal of Medicine, 345, 311-318.
https://doi.org/10.1056/nejm200108023450501

[14]  Duncan, J.S., Winston, G.P., Koepp, M.J. and Ourselin, S. (2016) Brain Imaging in the Assessment for Epilepsy Surgery. The Lancet Neurology, 15, 420-433.
https://doi.org/10.1016/s1474-4422(15)00383-x

[15]  Zijlmans, M., Worrell, G.A., Dümpelmann, M., Stieglitz, T., Barborica, A., Heers, M., et al. (2017) How to Record High‐frequency Oscillations in Epilepsy: A Practical Guideline. Epilepsia, 58, 1305-1315.
https://doi.org/10.1111/epi.13814

[16]  Wicks, R.T., Jermakowicz, W.J., Jagid, J.R., Couture, D.E., Willie, J.T., Laxton, A.W., et al. (2016) Laser Interstitial Thermal Therapy for Mesial Temporal Lobe Epilepsy. Neurosurgery, 79, S83-S91.
https://doi.org/10.1227/neu.0000000000001439

[17]  Cossu, M., Cardinale, F., Casaceli, G., Castana, L., Consales, A., D’Orio, P., et al. (2017) Stereo-EEG-Guided Radiofrequency Thermocoagulations. Epilepsia, 58, 66-72.
https://doi.org/10.1111/epi.13687

[18]  Guénot, M., Isnard, J., Catenoix, H., Mauguière, F. and Sindou, M. (2011) SEEG-Guided Rf-Thermocoagulation of Epileptic Foci: A Therapeutic Alternative for Drug-Resistant Non-Operable Partial Epilepsies. In: Pickard, J.D., et al., Eds., Advances and Technical Standards in Neurosurgery, Springer Vienna, 61-78.
https://doi.org/10.1007/978-3-7091-0179-7_4

[19]  Zhang, J., Xie, H. and Yang, A. (2025) Neuromodulation: Clinical Advances and Future Perspectives. Chinese Journal of Contemporary Neurology and Neurosurgery, 25, 1-10.
[20]  Yan, H., Toyota, E., Anderson, M., Abel, T.J., Donner, E., Kalia, S.K., et al. (2019) A Systematic Review of Deep Brain Stimulation for the Treatment of Drug-Resistant Epilepsy in Childhood. Journal of Neurosurgery: Pediatrics, 23, 274-284.
https://doi.org/10.3171/2018.9.peds18417

[21]  Gouveia, F.V., Warsi, N.M., Suresh, H., Matin, R. and Ibrahim, G.M. (2024) Neurostimulation Treatments for Epilepsy: Deep Brain Stimulation, Responsive Neurostimulation and Vagus Nerve Stimulation. Neurotherapeutics, 21, e00308.
https://doi.org/10.1016/j.neurot.2023.e00308

[22]  Bouwens van der Vlis, T.A.M., Schijns, O.E.M.G., Schaper, F.L.W.V.J., Hoogland, G., Kubben, P., Wagner, L., et al. (2019) Deep Brain Stimulation of the Anterior Nucleus of the Thalamus for Drug-Resistant Epilepsy. Neurosurgical Review, 42, 287-296.
https://doi.org/10.1007/s10143-017-0941-x

[23]  Warsi, N.M., Yan, H., Suresh, H., Wong, S.M., Arski, O.N., Gorodetsky, C., et al. (2022) The Anterior and Centromedian Thalamus: Anatomy, Function, and Dysfunction in Epilepsy. Epilepsy Research, 182, Article 106913.
https://doi.org/10.1016/j.eplepsyres.2022.106913

[24]  Valero-Cabré, A., Amengual, J.L., Stengel, C., Pascual-Leone, A. and Coubard, O.A. (2017) Transcranial Magnetic Stimulation in Basic and Clinical Neuroscience: A Comprehensive Review of Fundamental Principles and Novel Insights. Neuroscience & Biobehavioral Reviews, 83, 381-404.
https://doi.org/10.1016/j.neubiorev.2017.10.006

[25]  Pang, S., D’Ambrosio, S., Battaglia, G., Jiménez-Jiménez, D., Perulli, M., Silvennoinen, K., et al. (2022) The Impact of Transcranial Magnetic Stimulation (TMS) on Seizure Course in People with and without Epilepsy. Clinical Neurophysiology Practice, 7, 174-182.
https://doi.org/10.1016/j.cnp.2022.05.005

[26]  Binnie, C.D. (2000) Vagus Nerve Stimulation for Epilepsy: A Review. Seizure, 9, 161-169.
https://doi.org/10.1053/seiz.1999.0354

[27]  Ellrich, J. (2019) Transcutaneous Auricular Vagus Nerve Stimulation. Journal of Clinical Neurophysiology, 36, 437-442.
https://doi.org/10.1097/wnp.0000000000000576

[28]  Yang, J. and Phi, J.H. (2019) The Present and Future of Vagus Nerve Stimulation. Journal of Korean Neurosurgical Society, 62, 344-352.
https://doi.org/10.3340/jkns.2019.0037

[29]  Sills, G.J. and Rogawski, M.A. (2020) Mechanisms of Action of Currently Used Antiseizure Drugs. Neuropharmacology, 168, Article 107966.
https://doi.org/10.1016/j.neuropharm.2020.107966

[30]  Haas, H. and Panula, P. (2003) The Role of Histamine and the Tuberomamillary Nucleus in the Nervous System. Nature Reviews Neuroscience, 4, 121-130.
https://doi.org/10.1038/nrn1034

[31]  Lamb, Y.N. (2020) Pitolisant: A Review in Narcolepsy with or without Cataplexy. CNS Drugs, 34, 207-218.
https://doi.org/10.1007/s40263-020-00703-x

[32]  Schwartz, J. (2011) The Histamine H3 Receptor: From Discovery to Clinical Trials with Pitolisant. British Journal of Pharmacology, 163, 713-721.
https://doi.org/10.1111/j.1476-5381.2011.01286.x

[33]  Beheshti, S. and Wesal, M.W. (2022) Anticonvulsant Activity of the Histamine H3 Receptor Inverse Agonist Pitolisant in an Electrical Kindling Model of Epilepsy. Neuroscience Letters, 782, Article 136685.
https://doi.org/10.1016/j.neulet.2022.136685

[34]  Kasteleijn-Nolst Trenité, D., Parain, D., Genton, P., Masnou, P., Schwartz, J. and Hirsch, E. (2013) Efficacy of the Histamine 3 Receptor (H3R) Antagonist Pitolisant (Formerly Known as Tiprolisant; BF2.649) in Epilepsy: Dose-Dependent Effects in the Human Photosensitivity Model. Epilepsy & Behavior, 28, 66-70.
https://doi.org/10.1016/j.yebeh.2013.03.018

[35]  Collart Dutilleul, P., Ryvlin, P., Kahane, P., Vercueil, L., Semah, F., Biraben, A., et al. (2016) Exploratory Phase II Trial to Evaluate the Safety and the Antiepileptic Effect of Pitolisant (BF2.649) in Refractory Partial Seizures, Given as Adjunctive Treatment During 3 Months. Clinical Neuropharmacology, 39, 188-193.
https://doi.org/10.1097/wnf.0000000000000159

[36]  Wheless, J.W. (2008) History of the Ketogenic Diet. Epilepsia, 49, 3-5.
https://doi.org/10.1111/j.1528-1167.2008.01821.x

[37]  Freeman, J.M. and Kossoff, E.H. (2010) Ketosis and the Ketogenic Diet, 2010: Advances in Treating Epilepsy and Other Disorders. Advances in Pediatrics, 57, 315-329.
https://doi.org/10.1016/j.yapd.2010.08.003

[38]  Mazzuferi, M., Kumar, G., van Eyll, J., Danis, B., Foerch, P. and Kaminski, R.M. (2013) Nrf2 Defense Pathway: Experimental Evidence for Its Protective Role in Epilepsy. Annals of Neurology, 74, 560-568.
https://doi.org/10.1002/ana.23940

[39]  Williams, R.S.B., Boison, D., Masino, S.A. and Rho, J.M. (2024) Mechanisms of Ketogenic Diet Action. In: Noebels, J.L., Avoli, M., Rogawski, M.A., Vezzani, A. and Delgado-Escueta, A.V., Eds., Jaspers Basic Mechanisms of the Epilepsies, Oxford University Press, 1635-1666.
https://doi.org/10.1093/med/9780197549469.003.0079

[40]  Michael-Titus, A.T. and Priestley, J.V. (2014) Omega-3 Fatty Acids and Traumatic Neurological Injury: From Neuroprotection to Neuroplasticity? Trends in Neurosciences, 37, 30-38.
https://doi.org/10.1016/j.tins.2013.10.005

[41]  Rogawski, M.A., Löscher, W. and Rho, J.M. (2016) Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor Perspectives in Medicine, 6, a022780.
https://doi.org/10.1101/cshperspect.a022780

[42]  Johnson, K.V.-A. and Foster, K.R. (2018) Why Does the Microbiome Affect Behaviour? Nature Reviews Microbiology, 16, 647-655.
https://doi.org/10.1038/s41579-018-0014-3

[43]  Ding, M., Lang, Y., Shu, H., Shao, J. and Cui, L. (2021) Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Frontiers in Immunology, 12, Article 742449.
https://doi.org/10.3389/fimmu.2021.742449

[44]  De Caro, C., Leo, A., Nesci, V., Ghelardini, C., di Cesare Mannelli, L., Striano, P., et al. (2019) Intestinal Inflammation Increases Convulsant Activity and Reduces Antiepileptic Drug Efficacy in a Mouse Model of Epilepsy. Scientific Reports, 9, Article No. 13983.
https://doi.org/10.1038/s41598-019-50542-0

[45]  Dong, L., Zheng, Q., Cheng, Y., Zhou, M., Wang, M., Xu, J., et al. (2022) Gut Microbial Characteristics of Adult Patients with Epilepsy. Frontiers in Neuroscience, 16, Article 803538.
https://doi.org/10.3389/fnins.2022.803538

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133