全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Smart Grid  2025 

含高渗透率分布式光伏配电网的线损预测方法
Method for Line Loss Prediction in Distribution Networks with High Penetration of Distributed Photovoltaic Systems

DOI: 10.12677/sg.2025.153005, PP. 46-56

Keywords: 分布式光伏,线损预测,高斯混合模型,BI-LSTM神经网络
Distributed Photovoltaics
, Line Loss Prediction, Gaussian Mixture Model, BI-LSTM Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对含高渗透率分布式光伏的配电网线损预测问题,提出了一种基于BI-LSTM (Bidirectional Long-Short Term Memory,即双向长短期记忆网络)的线损预测方法:构建含分布式光伏配电网模型,并以改进高斯混合模型划分源荷典型运行场景,确定最佳场景数与聚类参数后,基于双向长短期记忆网络(BI-LSTM)构建线损预测模型实现高精度预测。通过某地区10 kV配电网实例,验证该方法在多场景下的有效性,并与传统极限学习机(ELM (Extreme Learning Machine))模型比较,证明其在预测精度与稳定性上更优,为电网降损和能效管理提供依据。
Aiming at the line loss prediction problem in distribution networks with high penetration of distributed photovoltaics (PV), a line loss prediction method based on Bidirectional Long-Short Term Memory (BI-LSTM) is proposed. A distribution network model with distributed photovoltaics is constructed, and the typical source-load operation scenarios are divided by an improved Gaussian Mixture Model. After determining the optimal number of scenarios and clustering parameters, a line loss prediction model based on BI-LSTM is built to achieve high-precision prediction. The effectiveness of this method in multiple scenarios is verified through a 10 kV distribution network example in a certain area. Compared with the traditional Extreme Learning Machine (ELM) model, it is proven to be superior in prediction accuracy and stability, providing a basis for power grid loss reduction and energy efficiency management.

References

[1]  Valderrama-Blavi, H., Alonso, C., Martinez-Salamero, L., Singer, S., Estibals, B. and Maixe-Altes, J. (2002) AC-LFR Concept Applied to Modular Photovoltaic Power Conversion Chains. IEE ProceedingsElectric Power Applications, 149, 441-448.
https://doi.org/10.1049/ip-epa:20020479
[2]  Rodriguez, C. and Amaratunga, G.A.J. (2004) Dynamic Stability of Grid-Connected Photovoltaic Systems. Proceeding of the Power Engineering Society General Meeting, 6-10 June, Denver, 2193-2199.
[3]  陈虎, 张田, 裴辉明, 等. 分布式光伏接入对电网电压和网损的影响分析[J]. 电测与仪表, 2015, 52(23): 63-69.
[4]  曹俊, 王珂, 林军, 等. 光伏高渗透下的台区降损策略研究[J]. 电力大数据, 2023, 26(4): 36-43.
[5]  吴向明, 宋楠, 李晓军, 等. 基于二次模态分解和卷积双向长短期记忆神经网络的高比例光伏配电网线损预测[J/OL]. 电网技术, 1-11.
https://doi.org/10.13335/j.1000-3673.pst.2024.0577, 2024-07-15.
[6]  程熙晔, 马旭恒, 杨帆, 等. 基于BI-LSTM和多头注意力机制的超短期电力负荷预测[J]. 农村电气化, 2024(12): 41-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133