全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleotide Relative Molecular Similarity within Anti-Psychotic Drug Structures

DOI: 10.4236/jbm.2025.136010, PP. 106-117

Keywords: Adenine Nucleotides, β-Arrestins, GPCR, Molecular Structure, Phosphodiesterases, Schizophrenia

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of antipsychotic drugs (APDs) over many years has brought about a shift in our comprehension of the critical cell receptors involved in schizophrenia and the classes of pharmaceuticals necessary for the control of symptoms. Phosphodiesterase inhibitors and β-arrestin agonists are now considered as medication along with conventional drugs acting at G protein-coupled receptors. A molecular modelling technique is used here to compare the chemical structures of past and current drugs of use in the treatment of schizophrenia. The data demonstrate that drug structures relate to ATP and cAMP nucleotide template structures. Phosphodiesterase inhibitors and third generation APDs relate better to cAMP nucleotide. The relative molecular similarity within APD, phosphodiesterase inhibitor and nucleotide structures is supportive of experimental evidence demonstrating interaction between these compounds and the primary role of adenine nucleotides in the pathogenesis and treatment of schizophrenia.

References

[1]  Kondej, M., Stępnicki, P. and Kaczor, A.A. (2018) Multi-Target Approach for Drug Discovery against Schizophrenia. International Journal of Molecular Sciences, 19, Article 3105.
https://doi.org/10.3390/ijms19103105
[2]  Suzuki, K. and Kimura, H. (2018) TAK-063, a Novel PDE10A Inhibitor with Balanced Activation of Direct and Indirect Pathways, Provides a Unique Opportunity for the Treatment of Schizophrenia. CNS Neuroscience & Therapeutics, 24, 604-614.
https://doi.org/10.1111/cns.12798
[3]  Gerfen, C.R. and Surmeier, D.J. (2011) Modulation of Striatal Projection Systems by Dopamine. Annual Review of Neuroscience, 34, 441-466.
https://doi.org/10.1146/annurev-neuro-061010-113641
[4]  Rybakowski, J.K. (2023) Application of Antipsychotic Drugs in Mood Disorders. Brain Sciences, 13, Article 414.
https://doi.org/10.3390/brainsci13030414
[5]  Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., Krause, M., Samara, M., Peter, N., et al. (2019) Comparative Efficacy and Tolerability of 32 Oral Antipsychotics for the Acute Treatment of Adults with Multi-Episode Schizophrenia: A Systematic Review and Network Meta-Analysis. The Lancet, 394, 939-951.
https://doi.org/10.1016/s0140-6736(19)31135-3
[6]  Gilleen, J., Farah, Y., Davison, C., Kerins, S., Valdearenas, L., Uz, T., et al. (2018) An Experimental Medicine Study of the Phosphodiesterase-4 Inhibitor, Roflumilast, on Working Memory-Related Brain Activity and Episodic Memory in Schizophrenia Patients. Psychopharmacology, 238, 1279-1289.
https://doi.org/10.1007/s00213-018-5134-y
[7]  Freyberg, Z., Aslanoglou, D., Shah, R. and Ballon, J.S. (2017) Intrinsic and Antipsychotic Drug-Induced Metabolic Dysfunction in Schizophrenia. Frontiers in Neuroscience, 11, Article 432.
https://doi.org/10.3389/fnins.2017.00432
[8]  Gurevich, E.V. and Gurevich, V.V. (2020) GRKs as Modulators of Neurotransmitter Receptors. Cells, 10, Article 52.
https://doi.org/10.3390/cells10010052
[9]  Sahay, S., Henkel, N.D., Vargas, C.F., McCullumsmith, R.E. and O’Donovan, S.M. (2023) Activity of Protein Kinase a in the Frontal Cortex in Schizophrenia. Brain Sciences, 14, Article 13.
https://doi.org/10.3390/brainsci14010013
[10]  Martinez, J.M., Shen, A., Xu, B., Jovanovic, A., de Chabot, J., Zhang, J., et al. (2023) Arrestin-Dependent Nuclear Export of Phosphodiesterase 4D Promotes GPCR-Induced Nuclear Camp Signaling Required for Learning and Memory. Science Signaling, 16, Article 3380.
https://doi.org/10.1126/scisignal.ade3380
[11]  Klewe, I., Nielsen, S., Tarpo, L., Urizar, E., Dipace, C., Javitch, J., et al. (2008) Recruitment of β-Arrestin2 to the Dopamine D2 Receptor: Insights into Anti-Psychotic and Anti-Parkinsonian Drug Receptor Signaling. Neuropharmacology, 54, 1215-1222.
https://doi.org/10.1016/j.neuropharm.2008.03.015
[12]  Grimes, J., Koszegi, Z., Lanoiselée, Y., Miljus, T., O’Brien, S.L., Stepniewski, T.M., et al. (2023) Plasma Membrane Preassociation Drives β-Arrestin Coupling to Receptors and Activation. Cell, 186, 2238-2255.
https://doi.org/10.1016/j.cell.2023.04.018
[13]  Urs, N.M., Peterson, S.M. and Caron, M.G. (2017) New Concepts in Dopamine D2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biological Psychiatry, 81, 78-85.
https://doi.org/10.1016/j.biopsych.2016.10.011
[14]  Wess, J., Oteng, A., Rivera-Gonzalez, O., Gurevich, E.V. and Gurevich, V.V. (2023) β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacological Reviews, 75, 854-884.
https://doi.org/10.1124/pharmrev.121.000302
[15]  de Bartolomeis, A., Ciccarelli, M., De Simone, G., Mazza, B., Barone, A. and Vellucci, L. (2023) Canonical and Non-Canonical Antipsychotics’ Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. International Journal of Molecular Sciences, 24, Article 5945.
https://doi.org/10.3390/ijms24065945
[16]  Baillie, G.S., Tejeda, G.S. and Kelly, M.P. (2019) Therapeutic Targeting of 3’, 5’-Cyclic Nucleotide Phosphodiesterases: Inhibition and beyond. Nature Reviews Drug Discovery, 18, 770-796.
https://doi.org/10.1038/s41573-019-0033-4
[17]  Anton, S.E., Kayser, C., Maiellaro, I., Nemec, K., Möller, J., Koschinski, A., et al. (2022) Receptor-Associated Independent Camp Nanodomains Mediate Spatiotemporal Specificity of GPCR Signaling. Cell, 185, 1130-1142.
https://doi.org/10.1016/j.cell.2022.02.011
[18]  Dlaboga, D., Hajjhussein, H. and O'Donnell, J.M. (2008) Chronic Haloperidol and Clozapine Produce Different Patterns of Effects on Phosphodiesterase-1b, 4B, and 10A Expression in Rat Striatum. Neuropharmacology, 54, 745-754.
https://doi.org/10.1016/j.neuropharm.2007.12.002
[19]  Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Braun, N.N. and Lavergne, L.G. (2010) Levels of Phosphodiesterase 4A and 4B Are Altered by Chronic Treatment with Psychotropic Medications in Rat Frontal Cortex. Synapse, 64, 550-555.
https://doi.org/10.1002/syn.20762
[20]  Persson, J., Szalisznyó, K., Antoni, G., Wall, A., Fällmar, D., Zora, H., et al. (2019) Phosphodiesterase 10A Levels Are Related to Striatal Function in Schizophrenia: A Combined Positron Emission Tomography and Functional Magnetic Resonance Imaging Study. European Archives of Psychiatry and Clinical Neuroscience, 270, 451-459.
https://doi.org/10.1007/s00406-019-01021-0
[21]  Prickaerts, J., Kerckhoffs, J., Possemis, N., van Overveld, W., Verbeek, F., Grooters, T., et al. (2024) Roflumilast and Cognition Enhancement: A Translational Perspective. Biomedicine & Pharmacotherapy, 181, Article 117707.
https://doi.org/10.1016/j.biopha.2024.117707
[22]  Livingston, N.R., Hawkins, P.C., Gilleen, J., Ye, R., Valdearenas, L., Shergill, S.S., et al. (2021) Preliminary Evidence for the Phosphodiesterase Type-4 Inhibitor, Roflumilast, in Ameliorating Cognitive Flexibility Deficits in Patients with Schizophrenia. Journal of Psychopharmacology, 35, 1099-1110.
https://doi.org/10.1177/02698811211000778
[23]  Barbagallo, F., Assenza, M.R. and Messina, A. (2024) In the Brain of Phosphodiesterases: Potential Therapeutic Targets for Schizophrenia. Clinical Psychopharmacology and Neuroscience, 23, 15-31.
https://doi.org/10.9758/cpn.24.1229
[24]  Pahwa, M., Sleem, A., Elsayed, O.H., Good, M.E. and El-Mallakh, R.S. (2021) New Antipsychotic Medications in the Last Decade. Current Psychiatry Reports, 23, Article 87.
https://doi.org/10.1007/s11920-021-01298-w
[25]  The IUPHAR/BPS Guide to Pharmacology (2024).
http://www.guidetopharmacology.org
[26]  Shekhar, A., Potter, W.Z., Lightfoot, J., Lienemann, J., Dubé, S., Mallinckrodt, C., et al. (2008) Selective Muscarinic Receptor Agonist Xanomeline as a Novel Treatment Approach for Schizophrenia. American Journal of Psychiatry, 165, 1033-1039.
https://doi.org/10.1176/appi.ajp.2008.06091591
[27]  Urs, N.M., Gee, S.M., Pack, T.F., McCorvy, J.D., Evron, T., Snyder, J.C., et al. (2016) Distinct Cortical and Striatal Actions of a β-Arrestin-Biased Dopamine D2 Receptor Ligand Reveal Unique Antipsychotic-Like Properties. Proceedings of the National Academy of Sciences, 113, E8178-E8186.
https://doi.org/10.1073/pnas.1614347113
[28]  Lipina, T.V., Giang, H., Thacker, J.S., Wetsel, W.C., Caron, M.G., Beaulieu, J.M., et al. (2024) Combination of Haloperidol with UNC9994, β-Arrestin-Biased Analog of Aripiprazole, Ameliorates Schizophrenia-Related Phenotypes Induced by NMDAR Deficit in Mice. International Journal of Neuropsychopharmacology, 27, pyae060.
https://doi.org/10.1093/ijnp/pyae060
[29]  Williams, W.R. (2018) Cell Signal Transduction: Hormones, Neurotransmitters and Therapeutic Drugs Relate to Purine Nucleotide Structure. Journal of Receptors and Signal Transduction, 38, 101-111.
https://doi.org/10.1080/10799893.2018.1431279
[30]  Suzuki, K., Harada, A., Suzuki, H., Capuani, C., Ugolini, A., Corsi, M., et al. (2017) Combined Treatment with a Selective PDE10A Inhibitor TAK-063 and Either Haloperidol or Olanzapine at Subeffective Doses Produces Potent Antipsychotic-Like Effects without Affecting Plasma Prolactin Levels and Cataleptic Responses in Rodents. Pharmacology Research & Perspectives, 6, e00372.
https://doi.org/10.1002/prp2.372
[31]  Amin, H.S., Parikh, P.K. and Ghate, M.D. (2021) Medicinal Chemistry Strategies for the Development of Phosphodiesterase 10A (PDE10A) Inhibitors—An Update of Recent Progress. European Journal of Medicinal Chemistry, 214, Article 113155.
https://doi.org/10.1016/j.ejmech.2021.113155
[32]  Sadeghi, M.A., Nassireslami, E., Yousefi Zoshk, M., Hosseini, Y., Abbasian, K. and Chamanara, M. (2023) Phosphodiesterase Inhibitors in Psychiatric Disorders. Psychopharmacology, 240, 1201-1219.
https://doi.org/10.1007/s00213-023-06361-3
[33]  Marques, T.R., Natesan, S., Niccolini, F., Politis, M., Gunn, R.N., Searle, G.E., et al. (2016) Phosphodiesterase 10A in Schizophrenia: A PET Study Using [11C] IMA 107. American Journal of Psychiatry, 173, 714-721.
https://doi.org/10.1176/appi.ajp.2015.15040518
[34]  Stedman, T.J. and Whiteford, H.A. (1990) Dopaminergic Supersensitivity and Vomiting among Schizophrenic Patients. Acta Psychiatrica Scandinavica, 81, 94-95.
https://doi.org/10.1111/j.1600-0447.1990.tb06457.x
[35]  Colijn, M.A. (2022) The Co-Occurrence of Gastrointestinal Symptoms and Psychosis. The Primary Care Companion for CNS Disorders, 24, 22nr03236.
https://doi.org/10.4088/pcc.22nr03236
[36]  Williams, W.R. (2025) Nucleotide Relative Molecular Similarity within Anti-Emetic/Pro-Kinetic Drug Structures. Journal of Biosciences and Medicines, 13, 215-229.
https://doi.org/10.4236/jbm.2025.131018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133