Groundwater Potential Mapping in the Sissili Sub-Catchment, Burkina Faso: Comparing Multicriteria Analysis and Artificial Intelligence in a Crystalline Basement Aquifer
Groundwater is an essential resource for rural dwellers in Burkina Faso, a country with limited surface water availability. However, localising and accessing groundwater is challenging. This research illustrates the use of Remote Sensing (RS), Geographic Information System (GIS), Analytical Hierarchical Process (AHP), and Artificial Neural Networks (ANN) to determine groundwater potential zones in the Sissili sub-basin. The AHP and ANN processes, using nine (9) selected factors affecting groundwater availability, were mapped and reclassified using a descriptive scale. The two maps obtained included five classifications: very low, low, moderate, high, and very high. The AHP model classified 16.36% (1236.43 km2) as very low, 51.53% (3895.39 km2) as low, 29.24% (2209.89 km2) as moderate, 2.82% (213.17 km2) as high and 0.05% (4.12 km2) as very high. For very low, low, moderate, high, and very high, the ANN model classified 43.56% (3292.98 km2), 14.60% (1103.82 km2), 31.10% (2350.86 km2), 9.10% (687.82 km2), and 1.63% (123.52 km2) of the area respectively. The results were validated using the borehole yield and the Area Under the Curve (AUC). The ANN map results have demonstrated higher accuracy, becoming the most suitable groundwater potential zone delineation method.
References
[1]
Eileen, P., Fan, Y., Cherry, J., et al. (2020) Groundwater in Our Water Cycle.
[2]
Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D. and Ross, A. (2016) Integrated Groundwater Management: Concepts, Approaches and Challenges. Springer, 1-762. https://doi.org/10.1007/978-3-319-23576-9
[3]
Adelana, S.M.A. (2008) Groundwater Research Issues in Africa. 1-7.
[4]
Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., et al. (2012) Ground Water and Climate Change. Nature Climate Change, 3, 322-329. https://doi.org/10.1038/nclimate1744
[5]
Horváthová, E. (2022) Analysis of Drinking Water Treatment Costs—With an Application to Groundwater Purification Valuation. One Ecosystem, 7, e82125. https://doi.org/10.3897/oneeco.7.e82125
[6]
MacDonald, A.M., Bonsor, H.C., Dochartaigh, B.É.Ó. and Taylor, R.G. (2012) Quantitative Maps of Groundwater Resources in Africa. Environmental Research Letters, 7, Article ID: 024009. https://doi.org/10.1088/1748-9326/7/2/024009
[7]
Dibaba, W.T., Demissie, T.A. and Miegel, K. (2020) Watershed Hydrological Response to Combined Land Use/Land Cover and Climate Change in Highland Ethiopia: Finchaa Catchment. Water, 12, Article No. 1801. https://doi.org/10.3390/w12061801
[8]
Singh, S.K., Zeddies, M., Shankar, U. and Griffiths, G.A. (2019) Potential Groundwater Recharge Zones within New Zealand. Geoscience Frontiers, 10, 1065-1072. https://doi.org/10.1016/j.gsf.2018.05.018
[9]
Ali, I.A. and Konatã, M. (2020) Identification and Mapping of Groundwater Potential Recharge Areas in the Dosso Region (Southwestern of Niger). European Scientific Journal, 16, 217-241. https://doi.org/10.19044/esj.2020.v16n18p217
[10]
Ghute, B.B. and Md. Babar, S. (2020) An Approach to Mapping Groundwater Recharge Potential Zones Using Geospatial Techniques in Kayadhu River Basin, Maharashtra. Indian Journal of Agricultural Research, 55, 23-32. https://doi.org/10.18805/ijare.a-5477
[11]
Ahirwar, S., Malik, M.S., Ahirwar, R. and Shukla, J.P. (2020) Application of Remote Sensing and GIS for Groundwater Recharge Potential Zone Mapping in Upper Betwa Watershed. Journal of the Geological Society of India, 95, 308-314. https://doi.org/10.1007/s12594-020-1430-3
[12]
Chenini, I., Mammou, A.B. and El May, M. (2009) Groundwater Recharge Zone Mapping Using GIS-Based Multi-Criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin). Water Resources Management, 24, 921-939. https://doi.org/10.1007/s11269-009-9479-1
[13]
Singh, P., Thakur, J.K. and Kumar, S. (2013) Delineating Groundwater Potential Zones in a Hard-Rock Terrain Using Geospatial Tool. Hydrological Sciences Journal, 58, 213-223. https://doi.org/10.1080/02626667.2012.745644
[14]
Morgan, H., Hussien, H.M., Madani, A. and Nassar, T. (2022) Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt. Sustainability, 14, Article No. 16942. https://doi.org/10.3390/su142416942
[15]
Tamiru, H. and Wagari, M. (2021) Evaluation of Data-Driven Model and GIS Technique Performance for Identification of Groundwater Potential Zones: A Case of Fincha Catchment, Abay Basin, Ethiopia. Journal of Hydrology: Regional Studies, 37, Article ID: 100902. https://doi.org/10.1016/j.ejrh.2021.100902
[16]
Garrett Jr., J.H. (1994) Where and Why Artificial Neural Networks Are Applicable in Civil Engineering. Journal of Computing in Civil Engineering, 8, 129-130.
[17]
Davis, D.F., Golicic, S.L. and Boerstler, C.N. (2010) Benefits and Challenges of Conducting Multiple Methods Research in Marketing. Journal of the Academy of Marketing Science, 39, 467-479. https://doi.org/10.1007/s11747-010-0204-7
[18]
Savadogo, A.N. (1984) Géologie et hydrogéologie du socle cristallin de Haute-Volta: Étude régionale du bassin versant de la Sissili. Université Scientifique et Médicale de Grénoble, 350.
[19]
Faye, M.D. (2022) Caractérisation et modélisation du transfert de polluants dans un aquifère fracture en milieu de socle (Sous bassin versant de la Sissili-Burkina).
[20]
Arulbalaji, P., Padmalal, D. and Sreelash, K. (2019) GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: A Case Study from Southern Western Ghats, India. Scientific Reports, 9, Article No. 2082. https://doi.org/10.1038/s41598-019-38567-x
[21]
Haman, D.J.B., Fantong, F.W., Ewodo Mboudou, G.O.A. and Messi, G. (2022) Approche décisionnelle géospatiale et multicritère dans l’identification des zones potentielles de recharge des eaux souterraines: Cas du bassin versant du Mayo Bocki au Nord Cameroun. Journal of the Cameroon Academy of Sciences, 18, 339-356. https://doi.org/10.4314/jcas.v18i1.5
[22]
Ake, G.E., Kouame, K.J., Bénédicte, A. and Patrice, J. (2024) Cartography of Potential Recharge Areas of the Bonoua Aquifer (Southeastern Côte d’Ivoire). Revue des Sciences de l’Eau, 31, 129-144.
[23]
Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R.G., et al. (2024) Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature, 625, 715-721. https://doi.org/10.1038/s41586-023-06879-8
[24]
Koussoube, Y. (1996) Hydrogéologie en milieu de socle cristallin du burkina faso.
[25]
Tolche, A.D. (2020) Groundwater Potential Mapping Using Geospatial Techniques: A Case Study of Dhungeta-Ramis Sub-Basin, Ethiopia. Geology, Ecology, and Landscapes, 5, 65-80. https://doi.org/10.1080/24749508.2020.1728882
[26]
Shaban, A., Khawlie, M. and Abdallah, C. (2005) Use of Remote Sensing and GIS to Determine Recharge Potential Zones: The Case of Occidental Lebanon. Hydrogeology Journal, 14, 433-443. https://doi.org/10.1007/s10040-005-0437-6
[27]
Kaewdum, N. and Chotpantarat, S. (2021) Mapping Potential Zones for Groundwater Recharge Using a GIS Technique in the Lower Khwae Hanuman Sub-Basin Area, Prachin Buri Province, Thailand. Frontiers in Earth Science, 9, Article ID: 717313. https://doi.org/10.3389/feart.2021.717313
[28]
Yabre, S., Koussoubé, Y., Gaëtan, S.É.S., Yalo, N. and Silliman, S. (2023) Identification of Groundwater Potential Zones in Samendeni Watershed in Sedimentary and Semi-Arid Contexts of Burkina Faso, Using Analytic Hierarchy Process (AHP) Method and GIS. American Journal of Climate Change, 12, 172-203. https://doi.org/10.4236/ajcc.2023.121009
[29]
Koffi, K.M., Yao, K.T., Mobio, A. and Oga, Y.M.S. (2016) Apport de l’analyse multi-critère à la cartographie des zones favorables à l’implantation de forages dans la région de Gagnoa (Centre-ouest de la Côte d’Ivoire). Geo-Eco-Trop, 40, 327-344.
[30]
Jourda, J.P., Kouame, K.J., Saley, M.B., Eba, L.E., Anani, A.T. and Biemi, J. (2015) Determination of Potentially Favorable Zones for the Setting up of Manual Boreholes from Multicriterion Analysis and GIS: Case of Cote d’Ivoire. Journal of Water Science, 28, 119-137. https://doi.org/10.7202/1032294ar
[31]
Saaty, T.L. (1977) A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15, 234-281. https://doi.org/10.1016/0022-2496(77)90033-5
[32]
Saaty, T.L. and Vargas, L.G. (1980) Hierarchical Analysis of Behavior in Competition: Prediction in Chess. Behavioral Science, 25, 180-191. https://doi.org/10.1002/bs.3830250303
[33]
Olden, J.D., Joy, M.K. and Death, R.G. (2004) An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data. Ecological Modelling, 178, 389-397. https://doi.org/10.1016/j.ecolmodel.2004.03.013
[34]
Sokeng, V.-C.J., Kouamé, F.K., Ngounou Ngatcha, B., Dibi N’da, H., Akpa You, L. and Rirabe, D. (2016) Delineating Groundwater Potential Zones in Western Cameroon Highlands Using GIS Based Artificial Neural Networks Model and Remote Sensing Data Mapping of Groundwater Potentials in Western Cameroon Highlands: Contribution of Remote Sensing (Optical and Rad). International Journal of Innovation and Applied Studies, 15, 747-759. http://www.ijias.issr-journals.org/
[35]
Dtissibe, F.Y., Ari, A.A.A., Titouna, C., Thiare, O. and Gueroui, A.M. (2020) Flood Forecasting Based on an Artificial Neural Network Scheme. Natural Hazards, 104, 1211-1237. https://doi.org/10.1007/s11069-020-04211-5
[36]
Lee, S., Song, K., Kim, Y. and Park, I. (2012) Regional Groundwater Productivity Potential Mapping Using a Geographic Information System (GIS) Based Artificial Neural Network Model. Hydrogeology Journal, 20, 1511-1527. https://doi.org/10.1007/s10040-012-0894-7
[37]
Cilimkovic, M. (2015) Neural Networks and Back Propagation Algorithm. Institute of Technology Blanchardstown, 15, 3-7.
[38]
Hong, H., Liu, J., Zhu, A., Shahabi, H., Pham, B.T., Chen, W., et al. (2017) A Novel Hybrid Integration Model Using Support Vector Machines and Random Subspace for Weather-Triggered Landslide Susceptibility Assessment in the Wuning Area (China). Environmental Earth Sciences, 76, Article No. 652. https://doi.org/10.1007/s12665-017-6981-2
[39]
Singh, S.K., Zeddies, M., Shankar, U. and Grif, G.A. (2018) Geoscience Frontiers Potential Groundwater.
[40]
Hand, D.J. (2009) Measuring Classifier Performance: A Coherent Alternative to the Area under the ROC Curve. Machine Learning, 77, 103-123. https://doi.org/10.1007/s10994-009-5119-5
[41]
Savadogo, N. (1975) Hydrogéologie du bassin versant de la Haute-Sissili (Haute-Volta).
[42]
Karthikeyan, R., Venkatesan, K.G.S. and Chandrasekar, A. (2016) A Comparison of Strengths and Weaknesses for Analytical Hierarchy Process. Journal of Chemical and Pharmaceutical Sciences, 9, 12-15. https://www.jchps.com
[43]
Zaresefat, M., Derakhshani, R., Nikpeyman, V., GhasemiNejad, A. and Raoof, A. (2023) Using Artificial Intelligence to Identify Suitable Artificial Groundwater Recharge Areas for the Iranshahr Basin. Water, 15, Article No. 1182. https://doi.org/10.3390/w15061182