Metal Contamination of Surface Sediments in an Urban Wetland: The Case of the Urban Natural Reserve of Pikine Grand Niaye and Dependencies (UNRPGND), Senegal
This study assessed the concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) in surface sediments from seven lakes within the Urban Natural Reserve of Pikine Grande Niaye and Dependencies, using atomic absorption spectrometry. Cd concentrations ranged from 6.17 to 8.34 mg/kg, showing relatively uniform levels across the lakes. In contrast, Pb exhibited greater variability, with concentrations between ranging from 0.76 to 4.18 mg/kg, while Hg concentrations ranged from 2.15 to 3.72 mg/kg. Although spatial variations in metal concentrations were observed, the Kruskal-Wallis test revealed no statistically significant differences among the lakes. Seasonal variations were more pronounced. Cd concentrations were significantly higher during the wet season compared to the dry season. Pb levels also peaked in the wet season, with the highest values recorded at Lac Kakhira. Hg concentrations remained low during the dry season but increased notably in the wet season, particularly at Lac Maristes 1. The Kruskal-Wallis test confirmed significant seasonal differences for both Cd and Pb, while Hg concentrations did not show significant seasonal variation but not for Hg. The contamination factor indicated high contamination levels by for Cd and Hg, especially at Lakes Lac Maristes 1 and Lac Maristes 2, whereas Pb contamination remained low across all sites. The geo-accumulation index confirmed significant contamination by Cd but not by Pb, suggesting that Pb currently poses a limited threat to the reserve’s ecosystem. These findings underscore the urgent need for continuous environmental monitoring and the implementation of proactive management strategies to safeguard this vulnerable urban wetland.
References
[1]
Mitsch, W.J. and Gosselink, J.G. (2015) Wetlands. 5th Edition, John Wiley & Sons.
[2]
Förstner, U. and Wittmann, G.T.W. (1981) Metal Pollution in the Aquatic Environment. 2nd Edition, Springer Science & Business Media. https://doi.org/10.1007/978-3-642-69385-4
[3]
Kalantzi, I., Black, K.D., Pergantis, S.A., Shimmield, T.M., Papageorgiou, N., Sevastou, K., et al. (2013) Metals and Other Elements in Tissues of Wild Fish from Fish Farms and Comparison with Farmed Species. Food Chemistry, 141, 680-694.
[4]
Diop, C., Dewaele, D., Toure, A., Cabral, M., Cazier, F., Fall, M., et al. (2012) Étude de la contamination par les éléments traces métalliques des sédiments cotiers au niveau des points d’évacuation des eaux usées à Dakar (Sénégal). Revue des Sciences de l’eau, 25, 277-285. https://doi.org/10.7202/1013107ar
[5]
Diop, C., Diatta, A., Ndiaye, A., Cabral, M., Toure, A. and Fall, M. (2019) Teneurs en métaux traces des eaux et poissons de cinq étangs de Dakar et risques pour la santé humaine. Journal of Applied Biosciences, 137, 13931-13939. https://doi.org/10.4314/jab.v137i1.1
[6]
Diop, C., Dewaelé, D., Diop, M., Touré, A., Cabral, M., Cazier, F., et al. (2014) Assessment of Contamination, Distribution and Chemical Speciation of Trace Metals in Water Column in the Dakar Coast and the Saint Louis Estuary from Senegal, West Africa. Marine Pollution Bulletin, 86, 539-546. https://doi.org/10.1016/j.marpolbul.2014.06.051
[7]
Bodin, N., N’Gom-Kâ, R., Kâ, S., Thiaw, O.T., Tito de Morais, L., Le Loc’h, F., et al. (2013) Assessment of Trace Metal Contamination in Mangrove Ecosystems from Senegal, West Africa. Chemosphere, 90, 150-157. https://doi.org/10.1016/j.chemosphere.2012.06.019
[8]
Mu, J., Zhang, S., Qu, L., Jin, F., Fang, C., Ma, X., et al. (2019) Microplastics Abundance and Characteristics in Surface Waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Marine Pollution Bulletin, 143, 58-65. https://doi.org/10.1016/j.marpolbul.2019.04.023
[9]
Demeke, Y., Renfree, M.B. and Short, R.V. (2012) Historical Range and Movements of the Elephants in Babile Elephant Sanctuary, Ethiopia. African Journal of Ecology, 50, 439-445. https://doi.org/10.1111/j.1365-2028.2012.01336.x
[10]
Ndour, M., Mbaye, M.L. and Sow, A. (2020) Impact of Urbanization on Wetland Ecosystems in Senegal: The Case of Pikine. International Journal of Environmental Studies, 77, 612-628.
[11]
Ridgway, J. and Shimmield, G. (2002) Estuaries as Repositories of Historical Contamination and Their Impact on Shelf Seas. Estuarine, Coastal and Shelf Science, 55, 903-928. https://doi.org/10.1006/ecss.2002.1035
[12]
He, Z., Li, F., Dominech, S., Wen, X. and Yang, S. (2019) Heavy Metals of Surface Sediments in the Changjiang (Yangtze River) Estuary: Distribution, Speciation and Environmental Risks. Journal of Geochemical Exploration, 198, 18-28. https://doi.org/10.1016/j.gexplo.2018.12.015
[13]
Hakanson, L. (1980) An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
[14]
El-Amier, Y.A., Elnaggar, A.A. and El-Alfy, M.A. (2017) Evaluation and Mapping Spatial Distribution of Bottom Sediment Heavy Metal Contamination in Burullus Lake, Egypt. Egyptian Journal of Basic and Applied Sciences, 4, 55-66. https://doi.org/10.1016/j.ejbas.2016.09.005
[15]
Hans Wedepohl, K. (1995) The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59, 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
[16]
Rezaee Ebrahim Saraee, K., Abdi, M.R., Naghavi, K., Saion, E., Shafaei, M.A. and Soltani, N. (2011) Distribution of Heavy Metals in Surface Sediments from the South China Sea Ecosystem, Malaysia. Environmental Monitoring and Assessment, 183, 545-554. https://doi.org/10.1007/s10661-011-1939-4
[17]
Lin, Y., Gritsenko, D., Feng, S., Teh, Y.C., Lu, X. and Xu, J. (2016) Detection of Heavy Metal by Paper-Based Microfluidics. Biosensors and Bioelectronics, 83, 256-266. https://doi.org/10.1016/j.bios.2016.04.061
[18]
Souareba, T., Doumnang, J., Rondouba, P., Tarkodjiel, M. and Mahmout, Y. (2024) Evaluation de la contamination par les métaux lourds (Al, Fe, Mn, Ni, Zn, Cr, Cd et Pb) des sédiments du bassin du lac Léré, Mayo-Kebbi Ouest, Tchad. International Journal of Biological and Chemical Sciences, 18, 723-736. https://doi.org/10.4314/ijbcs.v18i2.31
[19]
Abrahim, G.M.S. and Parker, R.J. (2008) Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227-238. https://doi.org/10.1007/s10661-007-9678-2
[20]
Gabriel, F.A., Silva, A.G., Queiroz, H.M., Ferreira, T.O., Hauser-Davis, R.A. and Bernardino, A.F. (2020) Ecological Risks of Metal and Metalloid Contamination in the Rio Doce Estuary. Integrated Environmental Assessment and Management, 16, 655-660. https://doi.org/10.1002/ieam.4250
[21]
Ali, H., Khan, E. and Ilahi, I. (2019) Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, Article 6730305. https://doi.org/10.1155/2019/6730305
[22]
Dai, L., Wang, L., Li, L., Liang, T., Zhang, Y., Ma, C., et al. (2018) Multivariate Geostatistical Analysis and Source Identification of Heavy Metals in the Sediment of Poyang Lake in China. Science of The Total Environment, 621, 1433-1444. https://doi.org/10.1016/j.scitotenv.2017.10.085
[23]
Zhu, L., Liu, J., Xu, S. and Xie, Z. (2017) Deposition Behavior, Risk Assessment and Source Identification of Heavy Metals in Reservoir Sediments of Northeast China. Ecotoxicology and Environmental Safety, 142, 454-463. https://doi.org/10.1016/j.ecoenv.2017.04.039
[24]
Muller, G. (1979) Heavy Metals in the Sediment of the Rhine Changes Seity. Umschauin Wissenschaft und Technik, 79, 778-783.
[25]
Li, S., Gu, S., Liu, W., Han, H. and Zhang, Q. (2008) Water Quality in Relation to Land Use and Land Cover in the Upper Han River Basin, China. CATENA, 75, 216-222. https://doi.org/10.1016/j.catena.2008.06.005
[26]
Gueye, M.T., Bop, D., Ndoye, A. and Sorlini, S. (2022) Utilisation des eaux usées traitées pour l’irrigation dans la zone humide du Technopole de Dakar: Un risque d’insécurité alimentaire des cultures maraichères. International Journal of Progressive Sciences and Technologies (IJPSAT), 33, 645-655.
[27]
Sojka, M. and Jaskuła, J. (2022) Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. International Journal of Environmental Research and Public Health, 19, Article 10502. https://doi.org/10.3390/ijerph191710502
[28]
Dai, X., Wu, S. and Li, S. (2018) Progress on Electrochemical Sensors for the Determination of Heavy Metal Ions from Contaminated Water. Journal of the Chinese Advanced Materials Society, 6, 91-111. https://doi.org/10.1080/22243682.2018.1425904
[29]
Roberts, T.L. (2014) Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Engineering, 83, 52-59. https://doi.org/10.1016/j.proeng.2014.09.012
[30]
Wang, X., Zhang, C., Huo, S., Ma, C. and Xi, B. (2018) Seasonal Variation and Sources of Heavy Metals in Surface Sediments of a Large Freshwater Lake, China. Environmental Science and Pollution Research, 25, 27052-27066.
[31]
Coffey, R., Paul, M.J., Stamp, J., Hamilton, A. and Johnson, T. (2018) A Review of Water Quality Responses to Air Temperature and Precipitation Changes 2: Nutrients, Algal Blooms, Sediment, Pathogens. JAWRA Journal of the American Water Resources Association, 55, 844-868. https://doi.org/10.1111/1752-1688.12711
[32]
Ji, Z., Zhang, H., Zhang, Y., Chen, T., Long, Z., Li, M., et al. (2019) Distribution, Ecological Risk and Source Identification of Heavy Metals in Sediments from the Baiyangdian Lake, Northern China. Chemosphere, 237, Article 124425. https://doi.org/10.1016/j.chemosphere.2019.124425
[33]
McKee, L.J., Bonnema, A., David, N., Davis, J.A., Franz, A., Grace, R., et al. (2017) Long-Term Variation in Concentrations and Mass Loads in a Semi-Arid Watershed Influenced by Historic Mercury Mining and Urban Pollutant Sources. Science of The Total Environment, 605, 482-497. https://doi.org/10.1016/j.scitotenv.2017.04.203
[34]
Liu, E., Yan, T., Birch, G. and Zhu, Y. (2014) Pollution and Health Risk of Potentially Toxic Metals in Urban Road Dust in Nanjing, a Mega-City of China. Science of The Total Environment, 476, 522-531. https://doi.org/10.1016/j.scitotenv.2014.01.055
[35]
Suciu, N.A., De Vivo, R., Rizzati, N. and Capri, E. (2022) Cd Content in Phosphate Fertilizer: Which Potential Risk for the Environment and Human Health? Current Opinion in Environmental Science & Health, 30, Article 100392. https://doi.org/10.1016/j.coesh.2022.100392
[36]
Mahgoub Idris, S.A., Altohame Jalgaf, G.G. and Mohammed, M.F.A. (2025) Assessment of Heavy Metal Pollution in Tobruk Bay, Libya: A Focus on Anthropogenic Impacts and Pollution Indices. Marine Pollution Bulletin, 214, Article 117709. https://doi.org/10.1016/j.marpolbul.2025.117709
[37]
Mason, R.P., Lawson, N.M. and Sheu, G.R. (2012) Mercury in the Atlantic Ocean: Factors Controlling Air-Sea Exchange and Wet/Dry Deposition. Marine Chemistry, 77, 73-84.
[38]
Maar, M., Larsen, M.M., Tørring, D. and Petersen, J.K. (2018) Bioaccumulation of Metals (Cd, Cu, Ni, Pb and Zn) in Suspended Cultures of Blue Mussels Exposed to Different Environmental Conditions. Estuarine, Coastal and Shelf Science, 201, 185-197. https://doi.org/10.1016/j.ecss.2015.10.010
[39]
Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J. and Pirrone, N. (2013) Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environmental Science & Technology, 47, 4967-4983. https://doi.org/10.1021/es305071v
[40]
Jeong, H., Ali, W., Zinck, P., Souissi, S. and Lee, J. (2024) Toxicity of Methylmercury in Aquatic Organisms and Interaction with Environmental Factors and Coexisting Pollutants: A Review. Science of The Total Environment, 943, Article 173574. https://doi.org/10.1016/j.scitotenv.2024.173574
[41]
Wang, H., Sun, L., Liu, Z. and Luo, Q. (2017) Spatial Distribution and Seasonal Variations of Heavy Metal Contamination in Surface Waters of Liaohe River, Northeast China. Chinese Geographical Science, 27, 52-62. https://doi.org/10.1007/s11769-017-0846-1
[42]
Scheuhammer, A.M., Meyer, M.W., Sandheinrich, M.B. and Murray, M.W. (2007) Effects of Environmental Methylmercury on the Health of Wild Birds, Mammals, and Fish. AMBIO: A Journal of the Human Environment, 36, 12-19. https://doi.org/10.1579/0044-7447(2007)36[12:eoemot]2.0.co;2
[43]
Knox, A.S., Paller, M.H., Seaman, J.C., Mayer, J. and Nicholson, C. (2021) Removal, Distribution and Retention of Metals in a Constructed Wetland over 20 Years. Science of The Total Environment, 796, Article 149062. https://doi.org/10.1016/j.scitotenv.2021.149062
[44]
Fournon, D. (1999) La phytorémédiation. Thèse, Université Grenoble Alpes.
[45]
Ramsar Convention Secretariat (2021) Global Wetland Outlook: Special Edition 2021.
[46]
Saidon, N.B., Szabó, R., Budai, P. and Lehel, J. (2024) Trophic Transfer and Biomagnification Potential of Environmental Contaminants (Heavy Metals) in Aquatic Ecosystems. Environmental Pollution, 340, Article122815. https://doi.org/10.1016/j.envpol.2023.122815
[47]
Islam, M.S., Ahmed, M.K., Habibullah-Al-Mamun, M. and Hoque, M.F. (2015) Preliminary Assessment of Heavy Metal Contamination in Surface Sediments from a River in Bangladesh. Environmental Earth Sciences, 73, 1837-1848. https://doi.org/10.1007/s12665-014-3538-5