|
基于相对运动模型的多颗粒与颗粒链对比研究
|
Abstract:
本文基于单颗粒相对运动模型,扩展构建出多颗粒相对运动模型和颗粒链相对运动模型。针对计算结果、计算效率和计算范围进行了对比分析,得出结论:多颗粒相对运动模型和颗粒链相对运动模型计算结果均与实验结果吻合,具有较高的计算精度;多颗粒相对运动模型的网格数量远高于颗粒链相对运动模型,计算效率较低;对于颗粒数量,多颗粒相对运动模型具有一定的局限性,颗粒链相对运动模型的使用范围相对更宽泛。本文旨在为研究者在不同工况下选择合适的模型提供参考。
Based on the single-particle relative motion model, this study develops extended multi-particle and particle chain relative motion models. A comparative analysis was conducted on computational results, efficiency, and scope. The results indicate that both the multi-particle and particle chain relative motion models exhibit high computational accuracy, with predictions in good agreement with experimental data. However, the multi-particle relative motion model requires a significantly larger number of meshes compared to the particle chain relative motion model, resulting in lower computational efficiency. Furthermore, the multi-particle relative motion model demonstrates limitations in handling large particle populations, whereas the particle chain relative motion model offers broader applicability. This study aims to provide references for researchers in selecting appropriate models under varying operational conditions.
[1] | Segré, G. and Silberberg, A. (1961) Radial Particle Displacements in Poiseuille Flow of Suspensions. Nature, 189, 209-210. https://doi.org/10.1038/189209a0 |
[2] | Di Carlo, D., Edd, J.F., Humphry, K.J., Stone, H.A. and Toner, M. (2009) Particle Segregation and Dynamics in Confined Flows. Physical Review Letters, 102, Article ID: 094503. https://doi.org/10.1103/physrevlett.102.094503 |
[3] | 王企鲲. 微通道中颗粒所受惯性升力特性的数值研究[J]. 机械工程学报, 2014, 50(2): 165-170. |
[4] | 刘唐京, 王企鲲, 邹赫. 高Re数层流管道中颗粒聚集特性的数值研究[J]. 应用数学和力学, 2023, 44(1): 70-79. |
[5] | 沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. |
[6] | Humphry, K.J., Kulkarni, P.M., Weitz, D.A., Morris, J.F. and Stone, H.A. (2010) Axial and Lateral Particle Ordering in Finite Reynolds Number Channel Flows. Physics of Fluids, 22, Article ID: 081703. https://doi.org/10.1063/1.3478311 |
[7] | Di Carlo, D., Irimia, D., Tompkins, R.G. and Toner, M. (2007) Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels. Proceedings of the National Academy of Sciences, 104, 18892-18897. https://doi.org/10.1073/pnas.0704958104 |
[8] | Kahkeshani, S., Haddadi, H. and Di Carlo, D. (2015) Preferred Interparticle Spacings in Trains of Particles in Inertial Microchannel Flows. Journal of Fluid Mechanics, 786, R3. https://doi.org/10.1017/jfm.2015.678 |
[9] | Gupta, A., Magaud, P., Lafforgue, C. and Abbas, M. (2018) Conditional Stability of Particle Alignment in Finite-Reynolds-Number Channel Flow. Physical Review Fluids, 3, Article ID: 114302. https://doi.org/10.1103/physrevfluids.3.114302 |
[10] | Gao, Y., Magaud, P., Baldas, L., Lafforgue, C., Abbas, M. and Colin, S. (2017) Self-Ordered Particle Trains in Inertial Microchannel Flows. Microfluidics and Nanofluidics, 21, Article No. 154. https://doi.org/10.1007/s10404-017-1993-5 |
[11] | Liu, J.Z. and Pan, Z.H. (2022) Self-Ordering and Organization of In-Line Particle Chain in a Square Microchannel. Physics of Fluids, 34, Article ID: 023309. https://doi.org/10.1063/5.0082577 |
[12] | Hood, K. and Roper, M. (2018) Pairwise Interactions in Inertially Driven One-Dimensional Microfluidic Crystals. Physical Review Fluids, 3, Article 094201. https://doi.org/10.1103/physrevfluids.3.094201 |
[13] | Di Carlo, D. (2009) Inertial Microfluidics. Lab on a Chip, 9, 3038-3046. https://doi.org/10.1039/b912547g |