|
滚动轴承–转子系统的非线性动力学分析
|
Abstract:
本文以六自由度滚动轴承–转子系统为研究对象,基于国家发展需求及我国在数控机床领域的现状,深入探讨其相关特性。构建了系统的非线性动力学模型并作基本假设,通过数值仿真分析不同参数对系统振动特性的影响,包括转速、偏心距、轴承游隙等。全面研究了基准模型的分岔特性,以及不同轴承游隙和偏心距下系统的运动状态变化。研究结果为该系统的设计与运行提供了理论依据,有助于提升系统的安全性、高效性与稳定性,对改善数控机床品质具有重要意义。
In this paper, the six-degree-of-freedom rolling bearing-rotor system is taken as the research object. In view of the national development requirements and the current situation of China in the field of CNC machine tools, its related characteristics are deeply explored. The nonlinear dynamic model of the system is constructed and basic assumptions are made. Through numerical simulation, the influence of different parameters on the vibration characteristics of the system is analyzed, including rotational speed, eccentricity, bearing clearance, etc. The bifurcation characteristics of the benchmark model and the change in the motion state of the system under different bearing clearances and eccentricities are comprehensively studied. The research results provide a theoretical basis for the design and operation of this system, which is helpful in improving the safety, high efficiency, and stability of the system and is of great significance for improving the quality of CNC machine tools.
[1] | 孟光. 转子动力学研究的回顾与展望[J]. 振动工程学报, 2002, 15(1): 5-13. |
[2] | 桂林, 李升. 国内重型数控机床的现状及发展趋势[J]. 中国机械工程, 2020, 31(23): 2780-2787+2797. |
[3] | 佟威. 数控机床主轴系统可靠性分析及仿真[D]: [硕士学位论文]. 沈阳: 东北大学, 2015. |
[4] | 吴昊. 滚动轴承动特性及轴承-转子系统动力学模型研究[D]: [博士学位论文]. 上海: 华东理工大学, 2011. |
[5] | Tiwari, M., Gupta, K. and Prakash, O. (2000) Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings. Journal of Sound and Vibration, 238, 757-779. https://doi.org/10.1006/jsvi.1999.3108 |
[6] | Harsha, S.P., Sandeep, K. and Prakash, R. (2003) The Effect of Speed of Balanced Rotor on Nonlinear Vibrations Associated with Ball Bearings. International Journal of Mechanical Sciences, 45, 725-740. https://doi.org/10.1016/s0020-7403(03)00064-x |
[7] | Yi, J., Pang, B., Liu, H., Wang, F., Ji, B. and Jing, M. (2014) Influence of Misalignment on Nonlinear Dynamic Characteristics for Matched Bearings-Rotor System. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 228, 172-181. https://doi.org/10.1177/1464419313520143 |
[8] | 白长青, 许庆余, 张小龙. 考虑径向内间隙的滚动轴承平衡转子系统的非线性动力稳定性[J]. 应用数学和力学, 2006(2): 159-169. |
[9] | 张伟刚, 高尚晗, 龙新华, 等. 机床主轴-滚动轴承系统非线性动力学分析[J]. 振动与冲击, 2008, 27(9): 72-75. |
[10] | 张耀强, 陈建军, 邓四二, 等. 考虑表面波纹度的滚动轴承-转子系统非线性动力特性[J]. 航空动力学报, 2008, 23(9): 1731-1736. |
[11] | 李飞敏, 陈果. 碰摩故障转子-滚动轴承耦合系统非线性动力学研究[J]. 机械科学与技术, 2008, 27(1): 58-64. |
[12] | 张伟, 胡海岩. 非线性动力学理论与应用的新进展[M]. 北京: 科学出版社, 2009. |
[13] | 杨绍普. 非线性动力学与控制的若干理论及应用[M]. 北京: 科学出版社, 2011. |
[14] | 李哲煜, 赵强, 张准革, 等. 球轴承-转子系统非线性动力学分析的研究进展[J]. 机电产品开发与创新, 2020, 33(4): 16-17+31. |
[15] | 朱玉鹏, 朱川峰, 谢鹏飞, 等. 动量轮滚动轴承-转子系统非线性动力响应分析[J]. 河南科技大学学报(自然科学版), 2018, 39(3): 24-28. |