|
恒法向刚度下土–复合土工膜界面剪切特性研究
|
Abstract:
在实际工程中,复合土工合成材料因其出色的力学性能和广泛的应用场景而得到日益广泛的应用。在常见的恒法向应力边界条件上进行改进,选取更能体现实际工况的恒法向刚度边界条件,从温度、含水率、法向应力、法向刚度方向研究土–复合土工膜界面的力学特性对全方位把握其界面有重要意义。结果表明,温度对界面剪切强度影响较大,含水率对界面的影响与温度密切相关。法向应力在常温和负温下界面剪切应力的增长速率较为稳定,而随着法向刚度的增大界面剪切强度也增大,且随着温度降低变化量也增大。
Composite geosynthetic materials are more and more used in practical engineering because of their excellent mechanical properties and wide application scenarios. By improving the common constant normal stress boundary conditions and selecting the constant normal stiffness boundary conditions that can better reflect the actual working conditions, it is of great significance to study the mechanical characteristics of the soil-composite geomembrane interface from the directions of temperature, water content, normal stress and normal stiffness. Results show that the influence of surface temperature on interfacial shear strength was great, and the influence of water content on interfacial shear strength is closely related to temperature. The growth rate of interfacial shear stress at normal temperature and negative temperature is relatively stable, and the interfacial shear strength also increases with the increase of normal stiffness, and the change amount also increases with the decrease in temperature.
[1] | Touze-Foltz, N., Bannour, H., Barral, C. and Stoltz, G. (2016) A Review of the Performance of Geosynthetics for Environmental Protection. Geotextiles and Geomembranes, 44, 656-672. https://doi.org/10.1016/j.geotexmem.2016.05.008 |
[2] | Rowe, R.K. and Yu, Y. (2019) Magnitude and Significance of Tensile Strains in Geomembrane Landfill Liners. Geotextiles and Geomembranes, 47, 439-458. https://doi.org/10.1016/j.geotexmem.2019.01.001 |
[3] | Chou, Y., Brachman, R.W.I. and Rowe, R.K. (2022) Leakage through a Hole in a Geomembrane beneath a Fine-Grained Tailings. Canadian Geotechnical Journal, 59, 372-383. https://doi.org/10.1139/cgj-2020-0289 |
[4] | Eid, H.T. (2011) Shear Strength of Geosynthetic Composite Systems for Design of Landfill Liner and Cover Slopes. Geotextiles and Geomembranes, 29, 335-344. https://doi.org/10.1016/j.geotexmem.2010.11.005 |
[5] | Li, L., Fall, M. and Fang, K. (2020) Shear Behavior at Interface between Compacted Clay Liner-Geomembrane under Freeze-Thaw Cycles. Cold Regions Science and Technology, 172, Article 103006. https://doi.org/10.1016/j.coldregions.2020.103006 |
[6] | Lin, H., Huang, W., Wang, L. and Liu, Z. (2023) Transport of Organic Contaminants in Composite Vertical Cut-Off Wall with Defective HDPE Geomembrane. Polymers, 15, Article 3031. https://doi.org/10.3390/polym15143031 |
[7] | Eldesouky, H.M.G., Thiel, R. and Brachman, R.W.I. (2023) Assessment of Geomembrane Strain from Pond Liner Bubbles. Geotextiles and Geomembranes, 51, 28-40. https://doi.org/10.1016/j.geotexmem.2023.07.002 |
[8] | Yu, Y. and Rowe, R.K. (2020) Geosynthetic Liner Integrity and Stability Analysis for a Waste Containment Facility with a Preferential Slip Plane within the Liner System. Geotextiles and Geomembranes, 48, 634-646. https://doi.org/10.1016/j.geotexmem.2020.03.008 |
[9] | Samanta, M., Bhowmik, R. and Khanderi, H. (2022) Laboratory Evaluation of Dynamic Shear Response of Sand-Geomembrane Interface. Geosynthetics International, 29, 99-112. https://doi.org/10.1680/jgein.21.00016a |
[10] | Zhang, Z., Fang, L., Zhao, Q., Zhang, M., Pan, Y. and Ma, B. (2022) An Experimental Evaluation of Pile-Anchor Strengthening Mechanics for Existing Tunnels in Landslide Region. Underground Space, 7, 199-218. https://doi.org/10.1016/j.undsp.2021.07.005 |
[11] | Dhadse, G.D., Ramtekkar, G.D. and Bhatt, G. (2021) Finite Element Modeling of Soil Structure Interaction System with Interface: A Review. Archives of Computational Methods in Engineering, 28, 3415-3432. https://doi.org/10.1007/s11831-020-09505-2 |
[12] | Hu, L. and Pu, J. (2004) Testing and Modeling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering, 130, 851-860. https://doi.org/10.1061/(asce)1090-0241(2004)130:8(851) |
[13] | Isaev, O.N. and Sharafutdinov, R.F. (2020) Soil Shear Strength at the Structure Interface. Soil Mechanics and Foundation Engineering, 57, 139-146. https://doi.org/10.1007/s11204-020-09649-0 |
[14] | Zheng, J., He, H. and Alimohammadi, H. (2021) Three-Dimensional Wadell Roundness for Particle Angularity Characterization of Granular Soils. Acta Geotechnica, 16, 133-149. https://doi.org/10.1007/s11440-020-01004-9 |
[15] | Janipour, A.K., Mousivand, M. and Bayat, M. (2022) Study of Interface Shear Strength between Sand and Concrete. Arabian Journal of Geosciences, 15, Article No. 172. https://doi.org/10.1007/s12517-021-09394-0 |
[16] | Samanta, M., Punetha, P. and Sharma, M. (2018) Influence of Surface Texture on Sand-Steel Interface Strength Response. Géotechnique Letters, 8, 40-48. https://doi.org/10.1680/jgele.17.00135 |
[17] | DeJong, J.T. and Westgate, Z.J. (2009) Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil-Structure Interface Behavior. Journal of Geotechnical and Geoenvironmental Engineering, 135, 1646-1660. https://doi.org/10.1061/(asce)1090-0241(2009)135:11(1646) |
[18] | Afzali-Nejad, A., Lashkari, A. and Shourijeh, P.T. (2017) Influence of Particle Shape on the Shear Strength and Dilation of Sand-Woven Geotextile Interfaces. Geotextiles and Geomembranes, 45, 54-66. https://doi.org/10.1016/j.geotexmem.2016.07.005 |
[19] | Vangla, P. and Gali, M.L. (2016) Shear Behavior of Sand-Smooth Geomembrane Interfaces through Micro-Topographical Analysis. Geotextiles and Geomembranes, 44, 592-603. https://doi.org/10.1016/j.geotexmem.2016.04.001 |
[20] | David Frost, J., Kim, D. and Lee, S. (2012) Microscale Geomembrane-Granular Material Interactions. KSCE Journal of Civil Engineering, 16, 79-92. https://doi.org/10.1007/s12205-012-1476-x |
[21] | Pillai, A.G. and Gali, M.L. (2022) Role of Particle Shape on the Shear Strength of Sand-GCL Interfaces under Dry and Wet Conditions. Geotextiles and Geomembranes, 50, 262-281. https://doi.org/10.1016/j.geotexmem.2021.11.004 |
[22] | Guo, Y., Lin, C., Leng, W. and Zhang, X. (2022) Laboratory Evaluation of Different Geosynthetics for Water Drainage. Geosynthetics International, 29, 254-269. https://doi.org/10.1680/jgein.21.00005 |
[23] | Indraratna, B., Biabani, M.M. and Nimbalkar, S. (2015) Behavior of Geocell-Reinforced Subballast Subjected to Cyclic Loading in Plane-Strain Condition. Journal of Geotechnical and Geoenvironmental Engineering, 141, 1-16. https://doi.org/10.1061/(asce)gt.1943-5606.0001199 |
[24] | Dove, J.E. and Frost, J.D. (1999) Peak Friction Behavior of Smooth Geomembrane-Particle Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 125, 544-555. https://doi.org/10.1061/(asce)1090-0241(1999)125:7(544) |