全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压电粘弹性纳米梁的振动
The Vibration of Piezoelectric Viscoelastic Nanobeam

DOI: 10.12677/ijm.2025.142008, PP. 77-85

Keywords: 压电材料,粘弹性,非局部理论,分数阶Kelvin-Voigt模型
Piezoelectric Materials
, Viscoelasticity, Nonlocal Theory, Fractional Viscoelastic Kelvin-Voigt Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

压电材料因其具有独特的力电耦合特性而受到研究者的关注。当材料发生变形时可能表现出既有粘性又有弹性的特性,分数阶微积分理论可以很好地刻画材料所具备的这种特性。本文考虑了非局部弹性理论,利用Hamilton原理推导了粘弹性压电纳米材料的分数阶控制方程,采用Galerkin方法和预估校正法求解控制方程,讨论了外加电压、非局部参数、分数阶等参数对粘弹性压电纳米梁的影响。结果表明:分数阶对粘弹性材料产生影响;系统阻尼随着分数阶的增加而增加。此外,非局部因子和压电场对其非线性振动行为有显著影响。
Piezoelectric materials have attracted the attention of researchers because of their unique electromechanical coupling characteristics. When the material is deformed, it may show both viscous and elastic characteristics, and the fractional calculus theory can well describe the characteristics of the material. In this paper, considering the theory of non-local elasticity, the fractional governing equations of viscoelastic piezoelectric nanomaterials are derived from Hamilton’s principle. The Galerkin method and the predictive correction method are used to solve the governing equations. The effects of applied voltage, non-local parameters, fractional order and other parameters on the viscoelastic piezoelectric nanobeams are discussed. The results show that the fractional order affects viscoelastic materials. The damping of the system increases as the fractional order increases. In addition, non-local factors and piezoelectric fields have a significant effect on the nonlinear vibration behavior.

References

[1]  Hatami, S., Ronagh, H.R. and Azhari, M. (2008) Exact Free Vibration Analysis of Axially Moving Viscoelastic Plates. Computers & Structures, 86, 1738-1746.
https://doi.org/10.1016/j.compstruc.2008.02.002
[2]  Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013) Coupled Global Dynamics of an Axially Moving Viscoelastic Beam. International Journal of Non-Linear Mechanics, 51, 54-74.
https://doi.org/10.1016/j.ijnonlinmec.2012.12.008
[3]  Karličić, D., Cajić, M., Murmu, T. and Adhikari, S. (2015) Nonlocal Longitudinal Vibration of Viscoelastic Coupled Double-Nanorod Systems. European Journal of MechanicsA/Solids, 49, 183-196.
https://doi.org/10.1016/j.euromechsol.2014.07.005
[4]  Pavlović, I., Pavlović, R., Ćirić, I. and Karličić, D. (2015) Dynamic Stability of Nonlocal Voigt-Kelvin Viscoelastic Rayleigh Beams. Applied Mathematical Modelling, 39, 6941-6950.
https://doi.org/10.1016/j.apm.2015.02.044
[5]  Lei, Y., Murmu, T., Adhikari, S. and Friswell, M.I. (2013) Dynamic Characteristics of Damped Viscoelastic Nonlocal Euler-Bernoulli Beams. European Journal of MechanicsA/Solids, 42, 125-136.
https://doi.org/10.1016/j.euromechsol.2013.04.006
[6]  Lei, Y., Adhikari, S. and Friswell, M.I. (2013) Vibration of Nonlocal Kelvin-Voigt Viscoelastic Damped Timoshenko Beams. International Journal of Engineering Science, 66, 1-13.
https://doi.org/10.1016/j.ijengsci.2013.02.004
[7]  Qiu, M., Lei, D. and Ou, Z. (2022) Nonlinear Vibration Analysis of Fractional Viscoelastic Nanobeam. Journal of Vibration Engineering & Technologies, 11, 4015-4038.
https://doi.org/10.1007/s42417-022-00799-z
[8]  Ansari, R., Faraji Oskouie, M., Gholami, R. and Sadeghi, F. (2016) Thermo-Electro-Mechanical Vibration of Postbuckled Piezoelectric Timoshenko Nanobeams Based on the Nonlocal Elasticity Theory. Composites Part B: Engineering, 89, 316-327.
https://doi.org/10.1016/j.compositesb.2015.12.029
[9]  Gheshlaghi, B. and Hasheminejad, S.M. (2012) Vibration Analysis of Piezoelectric Nanowires with Surface and Small Scale Effects. Current Applied Physics, 12, 1096-1099.
https://doi.org/10.1016/j.cap.2012.01.014
[10]  Wang, L. and Han, H. (2021) Vibration and Buckling Analysis of Piezoelectric Nanowires Based on Surface Energy Density. Acta Mechanica Solida Sinica, 34, 425-436.
https://doi.org/10.1007/s10338-020-00210-y
[11]  Ghorbanpour-Arani, A.H., Rastgoo, A., Sharafi, M.M., Kolahchi, R. and Ghorbanpour Arani, A. (2015) Nonlocal Viscoelasticity Based Vibration of Double Viscoelastic Piezoelectric Nanobeam Systems. Meccanica, 51, 25-40.
https://doi.org/10.1007/s11012-014-9991-0
[12]  Ke, L., Wang, Y. and Wang, Z. (2012) Nonlinear Vibration of the Piezoelectric Nanobeams Based on the Nonlocal Theory. Composite Structures, 94, 2038-2047.
https://doi.org/10.1016/j.compstruct.2012.01.023
[13]  Zenkour, A.M. and Sobhy, M. (2017) Nonlocal Piezo-Hygrothermal Analysis for Vibration Characteristics of a Piezoelectric Kelvin-Voigt Viscoelastic Nanoplate Embedded in a Viscoelastic Medium. Acta Mechanica, 229, 3-19.
https://doi.org/10.1007/s00707-017-1920-6
[14]  Gholipour, A., Ghayesh, M.H. and Hussain, S. (2022) A Continuum Viscoelastic Model of Timoshenko NSGT Nanobeams. Engineering with Computers, 38, 631-646.
[15]  Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Carrera, E. (2024) Bernstein Polynomials in Analyzing Nonlinear Forced Vibration of Curved Fractional Viscoelastic Beam with Viscoelastic Boundaries. Acta Mechanica, 235, 4541-4561.
https://doi.org/10.1007/s00707-024-03954-7
[16]  Shao, M., Xing, X., Wu, Q., Wu, J. and Liu, D. (2025) Parametric Vibration of Viscoelastic Moving Films with Time-Variant Tension under Thermal Loading. Journal of Vibration Engineering & Technologies, 13, Article No. 180.
https://doi.org/10.1007/s42417-024-01672-x
[17]  Makkad, G., Khalsa, L., Yadav, A.K. and Varghese, V. (2025) Non-Local Fractional Thermoviscoelastic Bending Analysis of Non-Simple Nanobeam under Ramp-Type Heating. Journal of Elasticity, 157, Article No. 28.
https://doi.org/10.1007/s10659-025-10119-7
[18]  Zhou, Z., Wu, L. and Du, S. (2006) Non-Local Theory Solution for a Mode I Crack in Piezoelectric Materials. European Journal of MechanicsA/Solids, 25, 793-807.
https://doi.org/10.1016/j.euromechsol.2005.10.003
[19]  陈文. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133