|
Bioprocess 2025
振动强耦合体系中溶剂–离子协同效应对ATP水解的调控作用
|
Abstract:
振动强耦合(vibrational strong coupling, VSC)通过溶剂–离子–光子协同作用重塑三磷酸腺苷(adenosine triphosphate, ATP)水解动力学。通过将法布里–珀罗腔与水的O-H振动(3404 cm?1)耦合,我们发现,在富含Ca2?的磷酸盐缓冲液中,VSC使水解速率提升2.4倍,优于纯水体系(1.6倍)。Ca2?通过中和ATP磷酸基团的负电荷减少静电排斥,同时VSC诱导的振动杂化(拉比分裂能735 cm?1)通过重构氢键网络优化质子传递路径,二者协同优化了酶–底物结合构象。红外光谱研究表明,VSC重构了氢键网络,优化了质子转移。这一“溶剂–离子–振动强耦合”三元模型为光控酶工程开辟了新途径,可应用于高效生物能源系统及纳米医学。
Vibrational strong coupling (VSC) reshapes adenosine triphosphate (ATP) hydrolysis kinetics through solvent-ion-photonic synergy. Using a Fabry-Pérot cavity coupled to water’s O-H vibration (3404 cm?1), we reveal that VSC in Ca2?-enriched phosphate-buffered saline (PBS) boosts hydrolysis rates by 2.4-fold, outperforming pure water (1.6-fold). Ca2? mitigate electrostatic repulsion by neutralizing the negative charges on ATP’s phosphate groups. Concurrently, VSC induces vibrational hybridization—evidenced by a Rabi splitting energy of 735?cm?1, which reconstructs the hydrogen-bond network and facilitates proton transfer. This synergistic effect between Ca2? and VSC optimizes the enzyme-substrate binding conformation. Infrared spectroscopy confirms that VSC reorganizes the hydrogen-bonding landscape to promote efficient proton transfer. This integrated “solvent-ion-VSC” triad model offers a novel strategy for light-regulated enzyme engineering and holds promise for applications in high-efficiency bioenergy systems and nanomedicine.
[1] | Simpkins, B.S., Dunkelberger, A.D. and Vurgaftman, I. (2023) Control, Modulation, and Analytical Descriptions of Vibrational Strong Coupling. Chemical Reviews, 123, 5020-5048. https://doi.org/10.1021/acs.chemrev.2c00774 |
[2] | Garcia-Vidal, F.J., Ciuti, C. and Ebbesen, T.W. (2021) Manipulating Matter by Strong Coupling to Vacuum Fields. Science, 373, eabd0336. https://doi.org/10.1126/science.abd0336 |
[3] | Hirai, K., Hutchison, J.A. and Uji-i, H. (2023) Molecular Chemistry in Cavity Strong Coupling. Chemical Reviews, 123, 8099-8126. https://doi.org/10.1021/acs.chemrev.2c00748 |
[4] | Granizo, E., Kriukova, I., Escudero-Villa, P., Samokhvalov, P. and Nabiev, I. (2024) Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems. https://doi.org/10.20944/preprints202408.0917.v1 |
[5] | Brawley, Z.T., Pannir-Sivajothi, S., Yim, J.E., Poh, Y.R., Yuen-Zhou, J. and Sheldon, M. (2025) Vibrational Weak and Strong Coupling Modify a Chemical Reaction via Cavity-Mediated Radiative Energy Transfer. Nature Chemistry, 17, 439-447. https://doi.org/10.1038/s41557-024-01723-6 |
[6] | Kumar, S., Biswas, S., Rashid, U., Mony, K.S., Chandrasekharan, G., Mattiotti, F., et al. (2024) Extraordinary Electrical Conductance through Amorphous Nonconducting Polymers under Vibrational Strong Coupling. Journal of the American Chemical Society, 146, 18999-19008. https://doi.org/10.1021/jacs.4c03016 |
[7] | Joseph, K., de Waal, B., Jansen, S.A.H., van der Tol, J.J.B., Vantomme, G. and Meijer, E.W. (2024) Consequences of Vibrational Strong Coupling on Supramolecular Polymerization of Porphyrins. Journal of the American Chemical Society, 146, 12130-12137. https://doi.org/10.1021/jacs.4c02267 |
[8] | Xiang, B. and Xiong, W. (2024) Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chemical Reviews, 124, 2512-2552. https://doi.org/10.1021/acs.chemrev.3c00662 |
[9] | Kim, Y., Barulin, A., Kim, S., Lee, L.P. and Kim, I. (2022) Recent Advances in Quantum Nanophotonics: Plexcitonic and Vibro-Polaritonic Strong Coupling and Its Biomedical and Chemical Applications. Nanophotonics, 12, 413-439. https://doi.org/10.1515/nanoph-2022-0542 |
[10] | Vergauwe, R.M.A., Thomas, A., Nagarajan, K., Shalabney, A., George, J., Chervy, T., et al. (2019) Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angewandte Chemie International Edition, 58, 15324-15328. https://doi.org/10.1002/anie.201908876 |
[11] | Lather, J. and George, J. (2020) Improving Enzyme Catalytic Efficiency by Co-Operative Vibrational Strong Coupling of Water. The Journal of Physical Chemistry Letters, 12, 379-384. https://doi.org/10.1021/acs.jpclett.0c03003 |
[12] | 白家琪. 振动强耦合对蔗糖水解动力学的影响研究[D]: [硕士学位论文]. 广州: 广州医科大学, 2023. |
[13] | Hirai, K., Andell Hutchison, J. and Uji‐i, H. (2023) Optical Cavity Design and Functionality for Molecular Strong Coupling. Chemistry—A European Journal, 30, e202303110. https://doi.org/10.1002/chem.202303110 |
[14] | 钟成建. 振动强耦合对DNA自组装的影响研究[D]: [博士学位论文]. 南京: 南京师范大学, 2023. |
[15] | 常蕴玮. 表面等离激元结构与红外分子的共振耦合及其优化与应用[D]: [博士学位论文]. 广州: 广州医科大学, 2022. |
[16] | Hirai, K., Takeda, R., Hutchison, J.A. and Uji‐i, H. (2020) Modulation of Prins Cyclization by Vibrational Strong Coupling. Angewandte Chemie International Edition, 59, 5332-5335. https://doi.org/10.1002/anie.201915632 |
[17] | George, J., Shalabney, A., Hutchison, J.A., Genet, C. and Ebbesen, T.W. (2015) Liquid-Phase Vibrational Strong Coupling. The Journal of Physical Chemistry Letters, 6, 1027-1031. https://doi.org/10.1021/acs.jpclett.5b00204 |
[18] | George, J., Chervy, T., Shalabney, A., Devaux, E., Hiura, H., Genet, C., et al. (2016) Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. Physical Review Letters, 117, Article ID: 153601. https://doi.org/10.1103/physrevlett.117.153601 |
[19] | Liu, T., Lei, C., Wang, H., Li, J., Jiang, P., He, X., et al. (2024) Aqueous Electrolyte with Weak Hydrogen Bonds for Four‐Electron Zinc-Iodine Battery Operates in a Wide Temperature Range. Advanced Materials, 36, Article ID: 2405473. https://doi.org/10.1002/adma.202405473 |
[20] | Okazaki, Y., Taniuchi, T., Mogami, G., Matubayasi, N. and Suzuki, M. (2014) Comparative Study on the Properties of Hydration Water of Na-and K-Halide Ions by Raman OH/OD-Stretching Spectroscopy and Dielectric Relaxation Data. The Journal of Physical Chemistry A, 118, 2922-2930. https://doi.org/10.1021/jp412804d |
[21] | Zhang, Q., Ma, Y., Lu, Y., Li, L., Wan, F., Zhang, K., et al. (2020) Modulating Electrolyte Structure for Ultralow Temperature Aqueous Zinc Batteries. Nature Communications, 11, Article No. 4463. https://doi.org/10.1038/s41467-020-18284-0 |
[22] | Ojha, D., Karhan, K. and Kühne, T.D. (2018) On the Hydrogen Bond Strength and Vibrational Spectroscopy of Liquid Water. Scientific Reports, 8, Article No. 16888. https://doi.org/10.1038/s41598-018-35357-9 |
[23] | 林觅. 电化学法对ATP、ADP、AMP缓冲能力的研究[D]: [硕士学位论文]. 沈阳: 辽宁大学, 2012. |
[24] | Si, Q., Guo, J., Lian, J., Liu, A., Zhao, X., Liu, S., et al. (2024) Multimodal Competition Shapes Enzymatic ATP Hydrolysis: Deciphering Microscale Confinement by Vibrational Strong Coupling. Chemical Engineering Journal, 496, Article ID: 154197. https://doi.org/10.1016/j.cej.2024.154197 |