|
Bioprocess 2025
Atl2 (Atlastin-2)在细胞中的功能及其作用机制
|
Abstract:
Atl2 (Atlastin-2)是一种重要的跨膜GTP酶,作为Atlastin蛋白家族成员之一,参与多种细胞生物学过程。研究表明Atl2与细胞器正常形态和功能的维持密切相关,例如内质网、高尔基体、脂滴等。本文综述了Atl2的结构及其生物学特性,重点阐述了Atl2在细胞膜融合、高尔基体形态稳定、内质网自噬调控和脂滴合成的作用,同时阐述了其在细胞器稳态及部分疾病中的作用。可见Atl2作为潜在治疗靶点是一个具有应用前景的研究方向,因此本文综述为进一步探索Atl2的功能与机制提供了较全面的研究基础和思路。
Atlastin-2 (Atl2), a critical transmembrane GTPase and member of the Atlastin protein family, participates in diverse cellular biological processes. Studies indicate that Atl2 plays a crucial role in maintaining the morphology and function of organelles, including the endoplasmic reticulum, Golgi apparatus, and lipid droplets. This paper reviews the structure and biological characteristics of Atl2, with a focus on elucidating its roles in cell membrane fusion, Golgi apparatus morphology maintenance, endoplasmic reticulum autophagy regulation, and lipid droplet synthesis. It also discusses the function of Atl2 in organelle homeostasis and its involvement in certain diseases. This review provides a comprehensive foundation and conceptual framework for further exploration of Atl2’s functions and mechanisms.
[1] | Wang, Y., Li, L., Hou, C., Lai, Y., Long, J., Liu, J., et al. (2016) Snare-Mediated Membrane Fusion in Autophagy. Seminars in Cell & Developmental Biology, 60, 97-104. https://doi.org/10.1016/j.semcdb.2016.07.009 |
[2] | Tábara, L., Segawa, M. and Prudent, J. (2024) Molecular Mechanisms of Mitochondrial Dynamics. Nature Reviews Molecular Cell Biology, 26, 123-146. https://doi.org/10.1038/s41580-024-00785-1 |
[3] | Daumke, O. and Unger, V.M. (2016) Protein-Mediated Membrane Remodeling. Journal of Structural Biology, 196, 1-2. https://doi.org/10.1016/j.jsb.2016.09.002 |
[4] | Ramachandran, R. and Schmid, S.L. (2018) The Dynamin Superfamily. Current Biology, 28, R411-R416. https://doi.org/10.1016/j.cub.2017.12.013 |
[5] | Praefcke, G.J.K. and McMahon, H.T. (2004) The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules? Nature Reviews Molecular Cell Biology, 5, 133-147. https://doi.org/10.1038/nrm1313 |
[6] | Pletan, M., Liu, X., Cha, G., Chen, Y., Knupp, J. and Tsai, B. (2023) The Atlastin ER Morphogenic Proteins Promote Formation of a Membrane Penetration Site during Non-Enveloped Virus Entry. Journal of Virology, 97, e00756-23. https://doi.org/10.1128/jvi.00756-23 |
[7] | Moss, T.J., Daga, A. and McNew, J.A. (2011) Fusing a Lasting Relationship between ER Tubules. Trends in Cell Biology, 21, 416-423. https://doi.org/10.1016/j.tcb.2011.03.009 |
[8] | Hu, J., Shibata, Y., Zhu, P., Voss, C., Rismanchi, N., Prinz, W.A., et al. (2009) A Class of Dynamin-Like GTPases Involved in the Generation of the Tubular ER Network. Cell, 138, 549-561. https://doi.org/10.1016/j.cell.2009.05.025 |
[9] | Anwar, K., Klemm, R.W., Condon, A., Severin, K.N., Zhang, M., Ghirlando, R., et al. (2012) The Dynamin-Like GTPases Sey1p Mediates Homotypic ER Fusion in s. Cerevisiae. Journal of Cell Biology, 197, 209-217. https://doi.org/10.1083/jcb.201111115 |
[10] | Bian, X., Klemm, R.W., Liu, T.Y., Zhang, M., Sun, S., Sui, X., et al. (2011) Structures of the Atlastin GTPases Provide Insight into Homotypic Fusion of Endoplasmic Reticulum Membranes. Proceedings of the National Academy of Sciences of the United States of America, 108, 3976-3981. https://doi.org/10.1073/pnas.1101643108 |
[11] | Byrnes, L.J. and Sondermann, H. (2011) Structural Basis for the Nucleotide-Dependent Dimerization of the Large G Protein Atlastin-1/SPG3A. Proceedings of the National Academy of Sciences of the United States of America, 108, 2216-2221. https://doi.org/10.1073/pnas.1012792108 |
[12] | Crosby, D., Mikolaj, M.R., Nyenhuis, S.B., Bryce, S., Hinshaw, J.E. and Lee, T.H. (2021) Reconstitution of Human Atlastin Fusion Activity Reveals Autoinhibition by the C Terminus. Journal of Cell Biology, 221, e202107070. https://doi.org/10.1083/jcb.202107070 |
[13] | Neufeldt, C.J., Cortese, M., Scaturro, P., Cerikan, B., Wideman, J.G., Tabata, K., et al. (2019) ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly. Nature Microbiology, 4, 2416-2429. https://doi.org/10.1038/s41564-019-0586-3 |
[14] | McNew, J.A., Sondermann, H., Lee, T., Stern, M. and Brandizzi, F. (2013) GTP-Dependent Membrane Fusion. Annual Review of Cell and Developmental Biology, 29, 529-550. https://doi.org/10.1146/annurev-cellbio-101512-122328 |
[15] | Liang, J.R., Lingeman, E., Ahmed, S. and Corn, J.E. (2018) Atlastins Remodel the Endoplasmic Reticulum for Selective Autophagy. Journal of Cell Biology, 217, 3354-3367. https://doi.org/10.1083/jcb.201804185 |
[16] | Byrnes, L.J., Singh, A., Szeto, K., Benvin, N.M., O’Donnell, J.P., Zipfel, W.R., et al. (2013) Structural Basis for Conformational Switching and GTP Loading of the Large G Protein Atlastin. The EMBO Journal, 32, 369-384. https://doi.org/10.1038/emboj.2012.353 |
[17] | Liu, T.Y., Bian, X., Sun, S., Hu, X., Klemm, R.W., Prinz, W.A., et al. (2012) Lipid Interaction of the C Terminus and Association of the Transmembrane Segments Facilitate Atlastin-Mediated Homotypic Endoplasmic Reticulum Fusion. Proceedings of the National Academy of Sciences of the United States of America, 109, E2146-E2154. https://doi.org/10.1073/pnas.1208385109 |
[18] | Faust, J.E., Desai, T., Verma, A., Ulengin, I., Sun, T., Moss, T.J., et al. (2015) The Atlastin C-Terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion. Journal of Biological Chemistry, 290, 4772-4783. https://doi.org/10.1074/jbc.m114.601823 |
[19] | Betancourt-Solis, M.A., Desai, T. and McNew, J.A. (2018) The Atlastin Membrane Anchor Forms an Intramembrane Hairpin That Does Not Span the Phospholipid Bilayer. Journal of Biological Chemistry, 293, 18514-18524. https://doi.org/10.1074/jbc.ra118.003812 |
[20] | Wiseman, R.L., Mesgarzadeh, J.S. and Hendershot, L.M. (2022) Reshaping Endoplasmic Reticulum Quality Control through the Unfolded Protein Response. Molecular Cell, 82, 1477-1491. https://doi.org/10.1016/j.molcel.2022.03.025 |
[21] | Foronda, H., Fu, Y., Covarrubias-Pinto, A., Bocker, H.T., González, A., Seemann, E., et al. (2023) Heteromeric Clusters of Ubiquitinated ER-Shaping Proteins Drive ER-Phagy. Nature, 618, 402-410. https://doi.org/10.1038/s41586-023-06090-9 |
[22] | Shibata, Y., Voeltz, G.K. and Rapoport, T.A. (2006) Rough Sheets and Smooth Tubules. Cell, 126, 435-439. https://doi.org/10.1016/j.cell.2006.07.019 |
[23] | Baumann, O. and Walz, B. (2001) Endoplasmic Reticulum of Animal Cells and Its Organization into Structural and Functional Domains. International Review of Cytology, 205, 149-214. https://doi.org/10.1016/s0074-7696(01)05004-5 |
[24] | Friedman, J.R. and Voeltz, G.K. (2011) The ER in 3D: A Multifunctional Dynamic Membrane Network. Trends in Cell Biology, 21, 709-717. https://doi.org/10.1016/j.tcb.2011.07.004 |
[25] | Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J. and Voeltz, G.K. (2010) ER Sliding Dynamics and Er–mitochondrial Contacts Occur on Acetylated Microtubules. Journal of Cell Biology, 190, 363-375. https://doi.org/10.1083/jcb.200911024 |
[26] | Orso, G., Pendin, D., Liu, S., Tosetto, J., Moss, T.J., Faust, J.E., et al. (2009) Homotypic Fusion of ER Membranes Requires the Dynamin-Like GTPases Atlastin. Nature, 460, 978-983. https://doi.org/10.1038/nature08280 |
[27] | Jang, E., Moon, Y., Yoon, S.Y., Diaz, J.A.R., Lee, M., Ko, N., et al. (2023) Human Atlastins Are Sufficient to Drive the Fusion of Liposomes with a Physiological Lipid Composition. Journal of Cell Biology, 222, e202109090. https://doi.org/10.1083/jcb.202109090 |
[28] | Zhao, G., Zhu, P., Renvoisé, B., Maldonado-Báez, L., Park, S.H. and Blackstone, C. (2016) Mammalian Knock Out Cells Reveal Prominent Roles for Atlastin GTPasess in ER Network Morphology. Experimental Cell Research, 349, 32-44. https://doi.org/10.1016/j.yexcr.2016.09.015 |
[29] | Jiang, X., Wang, X., Ding, X., Du, M., Li, B., Weng, X., et al. (2020) fam 134B Oligomerization Drives Endoplasmic Reticulum Membrane Scission for ER‐Phagy. The EMBO Journal, 39, e102608. https://doi.org/10.15252/embj.2019102608 |
[30] | Lamb, C.A., Yoshimori, T. and Tooze, S.A. (2013) The Autophagosome: Origins Unknown, Biogenesis Complex. Nature Reviews Molecular Cell Biology, 14, 759-774. https://doi.org/10.1038/nrm3696 |
[31] | Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., et al. (2015) Receptor-Mediated Selective Autophagy Degrades the Endoplasmic Reticulum and the Nucleus. Nature, 522, 359-362. https://doi.org/10.1038/nature14506 |
[32] | Dikic, I. (2017) Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 86, 193-224. https://doi.org/10.1146/annurev-biochem-061516-044908 |
[33] | Khaminets, A., Heinrich, T., Mari, M., Grumati, P., Huebner, A.K., Akutsu, M., et al. (2015) Regulation of Endoplasmic Reticulum Turnover by Selective Autophagy. Nature, 522, 354-358. https://doi.org/10.1038/nature14498 |
[34] | Fumagalli, F., Noack, J., Bergmann, T.J., Cebollero, E., Pisoni, G.B., Fasana, E., et al. (2016) Translocon Component Sec62 Acts in Endoplasmic Reticulum Turnover during Stress Recovery. Nature Cell Biology, 18, 1173-1184. https://doi.org/10.1038/ncb3423 |
[35] | Grumati, P., Morozzi, G., Hölper, S., Mari, M., Harwardt, M.I., Yan, R., et al. (2017) Full Length RTN3 Regulates Turnover of Tubular Endoplasmic Reticulum via Selective Autophagy. eLife, 6, e25555. https://doi.org/10.7554/elife.25555 |
[36] | Smith, M.D., Harley, M.E., Kemp, A.J., Wills, J., Lee, M., Arends, M., et al. (2018) CCPG1 Is a Non-Canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Developmental Cell, 44, 217-232.e11. https://doi.org/10.1016/j.devcel.2017.11.024 |
[37] | Chen, Q., Xiao, Y., Chai, P., Zheng, P., Teng, J. and Chen, J. (2019) ATL3 Is a Tubular ER-Phagy Receptor for Gabarap-Mediated Selective Autophagy. Current Biology, 29, 846-855.e6. https://doi.org/10.1016/j.cub.2019.01.041 |
[38] | Pendin, D., McNew, J.A. and Daga, A. (2011) Balancing ER Dynamics: Shaping, Bending, Severing, and Mending Membranes. Current Opinion in Cell Biology, 23, 435-442. https://doi.org/10.1016/j.ceb.2011.04.007 |
[39] | Wang, S., Tukachinsky, H., Romano, F.B. and Rapoport, T.A. (2016) Cooperation of the ER-Shaping Proteins Atlastin, Lunapark, and Reticulons to Generate a Tubular Membrane Network. eLife, 5, e18605. https://doi.org/10.7554/elife.18605 |
[40] | Lü, L., Niu, L. and Hu, J. (2020) “At Last In” the Physiological Roles of the Tubular ER Network. Biophysics Reports, 6, 105-114. https://doi.org/10.1007/s41048-020-00113-y |
[41] | Zhao, Y.G. and Zhang, H. (2018) Autophagosome Maturation: An Epic Journey from the ER to Lysosomes. Journal of Cell Biology, 218, 757-770. https://doi.org/10.1083/jcb.201810099 |
[42] | Liu, N., Zhao, H., Zhao, Y.G., Hu, J. and Zhang, H. (2021) Atlastin 2/3 Regulate ER Targeting of the ULK1 Complex to Initiate Autophagy. Journal of Cell Biology, 220, e202012091. https://doi.org/10.1083/jcb.202012091 |
[43] | Li, J., Ahat, E. and Wang, Y. (2019) Golgi Structure and Function in Health, Stress, and Diseases. In: Kloc, M., Ed., The Golgi Apparatus and Centriole, Springer, 441-485. https://doi.org/10.1007/978-3-030-23173-6_19 |
[44] | Carlton, J.G., Jones, H. and Eggert, U.S. (2020) Membrane and Organelle Dynamics during Cell Division. Nature Reviews Molecular Cell Biology, 21, 151-166. https://doi.org/10.1038/s41580-019-0208-1 |
[45] | Wong, Y.C., Kim, S., Peng, W. and Krainc, D. (2019) Regulation and Function of Mitochondria-Lysosome Membrane Contact Sites in Cellular Homeostasis. Trends in Cell Biology, 29, 500-513. https://doi.org/10.1016/j.tcb.2019.02.004 |
[46] | Stefano, G., Renna, L., Moss, T., McNew, J.A. and Brandizzi, F. (2011) In Arabidopsis, the Spatial and Dynamic Organization of the Endoplasmic Reticulum and Golgi Apparatus Is Influenced by the Integrity of the C‐Terminal Domain of RHD3, a Non‐Essential GTPases. The Plant Journal, 69, 957-966. https://doi.org/10.1111/j.1365-313x.2011.04846.x |
[47] | Namekawa, M., Muriel, M., Janer, A., Latouche, M., Dauphin, A., Debeir, T., et al. (2007) Mutations in the SPG3A Gene Encoding the GTPases Atlastin Interfere with Vesicle Trafficking in the ER/Golgi Interface and Golgi Morphogenesis. Molecular and Cellular Neuroscience, 35, 1-13. https://doi.org/10.1016/j.mcn.2007.01.012 |
[48] | Chen, J., Stefano, G., Brandizzi, F. and Zheng, H. (2011) Arabidopsis RHD3 Mediates the Generation of the Tubular ER Network and Is Required for Golgi Distribution and Motility in Plant Cells. Journal of Cell Science, 124, 2241-2252. https://doi.org/10.1242/jcs.084624 |
[49] | Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P. and Blackstone, C. (2008) Atlastin GTPasess Are Required for Golgi Apparatus and ER Morphogenesis. Human Molecular Genetics, 17, 1591-1604. https://doi.org/10.1093/hmg/ddn046 |
[50] | Welte, M.A. and Gould, A.P. (2017) Lipid Droplet Functions Beyond Energy Storage. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1862, 1260-1272. https://doi.org/10.1016/j.bbalip.2017.07.006 |
[51] | Bosch, M., Parton, R.G. and Pol, A. (2020) Lipid Droplets, Bioenergetic Fluxes, and Metabolic Flexibility. Seminars in Cell & Developmental Biology, 108, 33-46. https://doi.org/10.1016/j.semcdb.2020.02.010 |
[52] | Le Guillou, S., Laubier, J., Péchoux, C., Aujean, E., Castille, J., Leroux, C., et al. (2019) Defects of the Endoplasmic Reticulum and Changes to Lipid Droplet Size in Mammary Epithelial Cells Due to miR-30b-5p Overexpression Are Correlated to a Reduction in Atlastin 2 Expression. Biochemical and Biophysical Research Communications, 512, 283-288. https://doi.org/10.1016/j.bbrc.2019.03.022 |
[53] | Matsunaga, K., Tsugami, Y., Kumai, A., Suzuki, T., Nishimura, T. and Kobayashi, K. (2018) IL-1β Directly Inhibits Milk Lipid Production in Lactating Mammary Epithelial Cells Concurrently with Enlargement of Cytoplasmic Lipid Droplets. Experimental Cell Research, 370, 365-372. https://doi.org/10.1016/j.yexcr.2018.06.038 |
[54] | Klemm, R.W., Norton, J.P., Cole, R.A., Li, C.S., Park, S.H., Crane, M.M., et al. (2013) A Conserved Role for Atlastin GTPasess in Regulating Lipid Droplet Size. Cell Reports, 3, 1465-1475. https://doi.org/10.1016/j.celrep.2013.04.015 |
[55] | Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., et al. (2011) Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype. PLOS ONE, 6, e28175. https://doi.org/10.1371/journal.pone.0028175 |
[56] | Lundbäck, V., Kulyté, A., Arner, P., Strawbridge, R.J. and Dahlman, I. (2020) Genome-Wide Association Study of Diabetogenic Adipose Morphology in the Genetics of Adipocyte Lipolysis (Genial) Cohort. Cells, 9, Article 1085. https://doi.org/10.3390/cells9051085 |
[57] | Rivellese, F., Lobasso, A., Barbieri, L., Liccardo, B., de Paulis, A. and Rossi, F.W. (2019) Novel Therapeutic Approaches in Rheumatoid Arthritis: Role of Janus Kinases Inhibitors. Current Medicinal Chemistry, 26, 2823-2843. https://doi.org/10.2174/0929867325666180209145243 |
[58] | Deane, K.D. and Holers, V.M. (2020) Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis & Rheumatology, 73, 181-193. https://doi.org/10.1002/art.41417 |
[59] | Liu, S., Wang, K., Li, J., Liu, Y., Zhang, Z. and Meng, D. (2022) MiR-30e-5p Deficiency Exerts an Inhibitory Effect on Inflammation in Rheumatoid Arthritis via Regulating Atl2 Expression. Archives of Rheumatology, 38, 119-128. https://doi.org/10.46497/archrheumatol.2023.9526 |
[60] | Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648. https://doi.org/10.1016/s0140-6736(20)31288-5 |
[61] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[62] | Zhong, S., Wang, J., Hou, J., Zhang, Q., Xu, H., Hu, J., et al. (2018) Circular RNA Hsa_circ_0000993 Inhibits Metastasis of Gastric Cancer Cells. Epigenomics, 10, 1301-1313. https://doi.org/10.2217/epi-2017-0173 |
[63] | Yu, W., Jin, H. and Huang, Y. (2021) Mitochondria-Associated Membranes (MAMs): A Potential Therapeutic Target for Treating Alzheimer’s Disease. Clinical Science, 135, 109-126. https://doi.org/10.1042/cs20200844 |
[64] | Han, J., Park, H., Maharana, C., Gwon, A., Park, J., Baek, S.H., et al. (2021) Alzheimer’s Disease-Causing Presenilin-1 Mutations Have Deleterious Effects on Mitochondrial Function. Theranostics, 11, 8855-8873. https://doi.org/10.7150/thno.59776 |