|
基于网络药理学、分子对接与分子动力学模拟探讨华蟾酥毒基对翼状胬肉成纤维细胞的影响作用
|
Abstract:
目的:运用网络药理学、分子对接、分子动力学模拟和细胞实验预测华蟾酥毒基(Cinobufagin)对人翼状胬肉成纤维(Human Pterygium Fibroblasts, HPF)细胞影响作用及其可能作用靶点。方法:运用Swiss Target Prediction、GeneCards和OMIM等数据库筛选翼状胬肉(Pterygium)与华蟾酥毒基的相关靶点,绘制交集靶点韦恩图,STRING数据库构建蛋白相互作用网络图,运用GO与KEGG富集分析药物-疾病关键靶点的功能与通路,分子对接验证华蟾酥毒基与关键靶点相互结合能力,分子动力学模拟再次分析华蟾酥毒基与关键靶点的结构稳定性和相互作用;通过细胞培养,运用CCK-8法、RT-qPCR实验研究华蟾酥毒基对HPF细胞增殖、凋亡因子作用及关键靶点的影响。结果:检索获取华蟾酥毒基与翼状胬肉共同靶点36个;核心靶点涉及mTOR和MDM2;富集分析显示华蟾酥毒基主要作用在PI3K/AKT通路;分子对接发现其与mTOR、MDM2结合强烈;分子动力学模拟进一步确认其结构稳定性及相互作用。CCK8实验表明华蟾酥毒基抑制HPF细胞活力,RT-qPCR实验结果显示,华蟾酥毒基可干预相关靶点的mRNA表达。结论:通过网络药理学、分子对接、分子动力学模拟和RT-qPCR共同验证了华蟾酥毒基可抑制HPF细胞增殖及凋亡相关因子的表达;其作用机制可能与mTOR、MDM2等靶点有关。
Objective: This study aims to predict the effects of cinobufagin on human pterygium fibroblasts (HPF) and identify its potential targets using network pharmacology, molecular docking, molecular dynamics simulations, and cellular experiments. Methods: We utilized databases such as Swiss Target Prediction, GeneCards, and OMIM to screen for targets associated with pterygium and cinobufagin. A Venn diagram was created to illustrate the intersecting targets, and the STRING database was employed to construct a protein-protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to explore the functions and pathways of key drug-disease targets. Molecular docking was performed to assess the binding affinity of cinobufagin to these key targets, while molecular dynamics simulations were used to further analyze the structural stability and interactions of cinobufagin with the identified targets. Additionally, cell culture and reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments were carried out to investigate the effects of cinobufagin on HPF cell proliferation, apoptotic factors, and key targets. Results: A total of 36 common targets for cinobufagin and pterygium were identified, with core targets including mTOR and MDM2. Enrichment analysis indicated that cinobufagin primarily acts on the PI3K/AKT signaling pathway. Molecular docking studies demonstrated strong binding affinity of cinobufagin to mTOR and MDM2. Molecular dynamics simulations further confirmed the structural stability and interactions of cinobufagin with these targets. Results from the RT-qPCR experiments suggested that cinobufagin could modulate the mRNA expression of related targets. Conclusion: The combined approaches of network pharmacology, molecular docking,
[1] | Zaidi, S.B.H. and Ali Khan, W. (2021) Is Pterygium Morphology Related to Loss of Corneal Endothelial Cells? A Cross-Sectional Study. Clinical Ophthalmology, 15, 1259-1266. https://doi.org/10.2147/opth.s296531 |
[2] | Liu, L., Wu, J., Geng, J., Yuan, Z. and Huang, D. (2013) Geographical Prevalence and Risk Factors for Pterygium: A Systematic Review and Meta-Analysis. BMJ Open, 3, e003787. https://doi.org/10.1136/bmjopen-2013-003787 |
[3] | Rokohl, A.C., Heindl, L.M. and Cursiefen, C. (2021) Pterygium: Pathogenese, Diagnose und Therapie. Der Ophthalmologe, 118, 749-763. https://doi.org/10.1007/s00347-021-01366-9 |
[4] | Martins, T.G., Costa, A.L., Alves, M.R., et al. (2016) Mitomycin C in Pterygium Treatment. International Journal of Ophthalmology, 9, 465-468. |
[5] | Wang, G., Dong, N., Wang, Y., Li, J., Dong, F., Jeyalatha, V., et al. (2018) Epithelial Dysplasia in Pterygium Postoperative Granuloma. Experimental Eye Research, 175, 199-206. https://doi.org/10.1016/j.exer.2018.08.014 |
[6] | Zada, M., Pattamatta, U. and White, A. (2018) Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology, 125, 179-192. https://doi.org/10.1016/j.ophtha.2017.08.028 |
[7] | Baheran, S.S., Alany, R.G., Schwikkard, S., Muen, W., Salman, L.N., Freestone, N., et al. (2023) Pharmacological Treatment Strategies of Pterygium: Drugs, Biologics, and Novel Natural Products. Drug Discovery Today, 28, Article 103416. https://doi.org/10.1016/j.drudis.2022.103416 |
[8] | 李月明, 李苑碧, 吴虎强, 等. 翼状胬肉术后配合中药治疗的研究进展[J]. 光明中医, 2021, 36(15): 2639-2641. |
[9] | Dai, C., Zhang, R., An, P., Deng, Y., Rahman, K. and Zhang, H. (2023) Cinobufagin: A Promising Therapeutic Agent for Cancer. Journal of Pharmacy and Pharmacology, 75, 1141-1153. https://doi.org/10.1093/jpp/rgad059 |
[10] | 赵俊生. 华蟾素注射液在眼科的应用[J]. 国际眼科杂志, 2013, 13(10): 2017-2018. |
[11] | 赵新荣. mTOR/p70S6K信号通路在翼状胬肉成纤维细胞增殖和转分化中的作用研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2018. |
[12] | Liu, W., Lin, T. and Gong, L. (2023) ZD6474 Attenuates Fibrosis and Inhibits Neovascularization in Human Pterygium by Suppressing AKT-mTOR Signaling Pathway. Journal of Ocular Pharmacology and Therapeutics, 39, 128-138. https://doi.org/10.1089/jop.2022.0127 |
[13] | Xu, Z., Bao, J., Jin, X., Li, H., Fan, K., Wu, Z., et al. (2023) The Effects of Cinobufagin on Hepatocellular Carcinoma Cells Enhanced by MRT68921, an Autophagy Inhibitor. The American Journal of Chinese Medicine, 51, 1595-1611. https://doi.org/10.1142/s0192415x23500726 |
[14] | Jin, X., Wang, J., Zou, S., Xu, R., Cao, J., Zhang, Y., et al. (2020) Cinobufagin Triggers Defects in Spindle Formation and Cap-Dependent Translation in Liver Cancer Cells by Inhibiting the AURKA-mTOR-eIF4E Axis. The American Journal of Chinese Medicine, 48, 651-678. https://doi.org/10.1142/s0192415x20500330 |
[15] | Lu, X., Qiao, Y., Li, Y., Yang, B., Chen, M. and Xing, C. (2017) Preclinical Study of Cinobufagin as a Promising Anti-Colorectal Cancer Agent. Oncotarget, 8, 988-998. https://doi.org/10.18632/oncotarget.13519 |
[16] | Hirasaki, Y., Okabe, A., Fukuyo, M., Rahmutulla, B., Mano, Y., Seki, M., et al. (2022) Cinobufagin Inhibits Proliferation of Acute Myeloid Leukaemia Cells by Repressing C-Myc Pathway-Associated Genes. Chemico-Biological Interactions, 360, Article 109936. https://doi.org/10.1016/j.cbi.2022.109936 |
[17] | Li, X., Chen, C., Dai, Y., Huang, C., Han, Q., Jing, L., et al. (2019) Cinobufagin Suppresses Colorectal Cancer Angiogenesis by Disrupting the Endothelial Mammalian Target of Rapamycin/Hypoxia‐Inducible Factor 1α Axis. Cancer Science, 110, 1724-1734. https://doi.org/10.1111/cas.13988 |
[18] | Wang, C., Mei, X., Wu, Y., Yang, Y. and Zeng, Z. (2022) Cinobufagin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Regulating Autophagy through Activation of the P53/mTOR Pathway. Frontiers in Pharmacology, 13, Article 994625. https://doi.org/10.3389/fphar.2022.994625 |
[19] | Zhang, L., Huang, X., Guo, T., Wang, H., Fan, H. and Fang, L. (2020) Study of Cinobufagin as a Promising Anticancer Agent in Uveal Melanoma through Intrinsic Apoptosis Pathway. Frontiers in Oncology, 10, Article 325. https://doi.org/10.3389/fonc.2020.00325 |
[20] | Arish, M., Kordi-Tamandani, D.M., Sangterash, M.H. and Poyandeh, R. (2016) Assessment of Promoter Hypermethylation and Expression Profile of P14ARF and MDM2 Genes in Patients with Pterygium. Eye & Contact Lens: Science & Clinical Practice, 42, e4-e7. https://doi.org/10.1097/icl.0000000000000126 |
[21] | Cao, D., Ng, T.K., Yip, Y.W.Y., Young, A.L., Pang, C.P., Chu, W.K., et al. (2018) P53 Inhibition by MDM2 in Human Pterygium. Experimental Eye Research, 175, 142-147. https://doi.org/10.1016/j.exer.2018.06.021 |