全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冻土–加固砂土工布界面负幂乘函数模型研究
Negative Power Multiplication Function Model of the Frozen Soil-Reinforced Sand Geotextile Interface

DOI: 10.12677/ijm.2025.142007, PP. 67-76

Keywords: 冻土,界面,界面粗糙度,本构模型
Frozen Soil
, Interface, Interface Roughness, Constitutive Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

冻土对温度的敏感影响着与其他材料界面的接触关系。土工合成材料由于其优异的物理力学性能,在土木工程、环境工程和水利工程等方面得到了大量应用,冻土与结构界面的模型旨在探究这种复杂界面的相互作用机理,该模型综合考虑温度效应、界面粗糙度、力学性质等影响因素,来描述界面的应力–应变关系、剪切强度等特性。根据接触面关节粗糙度系数,结合Mohr-Coulomb准则,应用了一种估算裂缝的峰值抗剪强度的方法,得到关于表面粗糙度与峰值剪切强度的参数方程。在现有本构模型的基础上,考虑温度、加固砂土工布表面粗糙度等参数,建立土–加固砂土工布界面剪切力学特性的模型。通过试验数据与理论模型对比,验证模型的有效性,对冻土区基础工程建设具有指导和参考意义。
The sensitivity of frozen soil to temperature affects its contact relationship with the interfaces of other materials. Due to their excellent physical and mechanical properties, geosynthetics have been widely applied in civil engineering, environmental engineering, hydraulic engineering, etc. The model of the interface between frozen soil and structures aims to explore the interaction mechanism of such complex interfaces. This model comprehensively considers influencing factors such as the temperature effect, interface roughness, and mechanical properties to describe the characteristics of the interface, such as the stress-strain relationship and shear strength. According to the joint roughness coefficient of the contact surface and combined with the Mohr-Coulomb criterion, a method for estimating the peak shear strength of cracks is applied, and a parametric equation regarding the surface roughness and peak shear strength is obtained. Based on the existing constitutive models, a model of the shear mechanical properties of the interface between soil and reinforced sand geotextile is established, taking into account parameters such as temperature and the surface roughness of the reinforced sand geotextile. By comparing the test data with the theoretical model, the effectiveness of the model is verified, which has guiding and reference significance for the construction of foundation engineering in frozen soil areas.

References

[1]  Touze-Foltz, N., Bannour, H., Barral, C. and Stoltz, G. (2016) A Review of the Performance of Geosynthetics for Environmental Protection. Geotextiles and Geomembranes, 44, 656-672.
https://doi.org/10.1016/j.geotexmem.2016.05.008
[2]  Shukla, S.K. (2017) An Introduction to Geosynthetic Engineering. CRC Press.
[3]  Müller, W.W. and Saathoff, F. (2015) Geosynthetics in Geoenvironmental Engineering. Science and Technology of Advanced Materials, 16, Article 034605.
https://doi.org/10.1088/1468-6996/16/3/034605
[4]  Giroud, J.P., Han, J., Tutumluer, E. and Dobie, M.J.D. (2023) The Use of Geosynthetics in Roads. Geosynthetics International, 30, 47-80.
https://doi.org/10.1680/jgein.21.00046
[5]  Liu, J., Lv, P., Cui, Y. and Liu, J. (2014) Experimental Study on Direct Shear Behavior of Frozen Soil-Concrete Interface. Cold Regions Science and Technology, 104, 1-6.
https://doi.org/10.1016/j.coldregions.2014.04.007
[6]  Liu, J., Cui, Y., Wang, P. and Lv, P. (2014) Design and Validation of a New Dynamic Direct Shear Apparatus for Frozen Soil. Cold Regions Science and Technology, 106, 207-215.
https://doi.org/10.1016/j.coldregions.2014.07.010
[7]  董龙龙, 吴文兵, 梁荣柱, 等. 基于指数模型的能源桩长期响应研究[J]. 岩石力学与工程学报, 2021, 40(3): 629-639.
[8]  Gitau, A.N., Gumbe, L.O. and Biamah, E.K. (2006) Influence of Soil Water on Stress-Strain Behaviour of a Compacting Soil in Semi-Arid Kenya. Soil and Tillage Research, 89, 144-154.
https://doi.org/10.1016/j.still.2005.07.008
[9]  Seidel, J. and Haberfield, C. (2002) Laboratory Testing of Concrete-Rock Joints in Constant Normal Stiffness Direct Shear. Geotechnical Testing Journal, 25, 391-404.
https://doi.org/10.1520/gtj11292j
[10]  Zhang, H., Su, Y., Li, A. and Guo, P. (2023) Experimental Investigation of Novel Pre-Compressed Viscoelastic Dampers with Different Matrix Materials. Structures, 53, 625-641.
https://doi.org/10.1016/j.istruc.2023.04.056
[11]  Xie, S., Lin, H., Duan, H. and Chen, Y. (2023) Modeling Description of Interface Shear Deformation: A Theoretical Study on Damage Statistical Distributions. Construction and Building Materials, 394, Article 132052.
https://doi.org/10.1016/j.conbuildmat.2023.132052
[12]  Aubry, D., Modaressi, A. and Modaressi, H. (1990) A Constitutive Model for Cyclic Behaviour of Interfaces with Variable Dilatancy. Computers and Geotechnics, 9, 47-58.
https://doi.org/10.1016/0266-352x(90)90028-t
[13]  Long, Y., Chen, J. and Zhang, J. (2017) Introduction and Analysis of a Strain-Softening Damage Model for Soil-Structure Interfaces Considering Shear Thickness. KSCE Journal of Civil Engineering, 21, 2634-2640.
https://doi.org/10.1007/s12205-017-0476-2
[14]  季明, 孙中光, 刘文朋, 等. 基于幂函数分布的砂岩损伤本构模型研究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(3): 324-331.
[15]  张冬霁, 卢廷浩. 一种土与结构接触面模型的建立及其应用[J]. 岩土工程学报, 1998(6): 65-69.
[16]  周爱兆, 卢廷浩. 基于广义位势理论的接触面弹塑性本构模型[J]. 岩土工程学报, 2008, 30(10): 1532-1536.
[17]  Clough, G.W. and Duncan, J.M. (1971) Finite Element Analyses of Retaining Wall Behavior. Journal of the Soil Mechanics and Foundations Division, 97, 1657-1673.
https://doi.org/10.1061/jsfeaq.0001713
[18]  Brandt, J.R.T. (1985) Behaviour of Soil-Concrete Interfaces. University of Alberta.
[19]  殷宗泽, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14-22.
[20]  Barton, N. (1973) Review of a New Shear-Strength Criterion for Rock Joints. Engineering Geology, 7, 287-332.
https://doi.org/10.1016/0013-7952(73)90013-6
[21]  Barton, N. and Choubey, V. (1977) The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics, 10, 1-54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133