|
Pure Mathematics 2025
一类p-拉普拉斯方程解的存在性和集中紧性
|
Abstract:
文章研究了如下形式的 p-Laplace 方程:
-Δpu+λV(x)|μ|P-2
u=f(x,μ),x∈?N,
μ∈W1,p(?N),
其中参数λ>0, V∈C(RN, R+)且V -1(0)内部非空。在一些较弱的假设条件下,本文讨论了该方程非平凡解的存在性以及当λ→∞时该方程解的集中紧性,所得结果推广了相关文献的研究成果。
This article concerns the p-Laplace equations:
-Δpu+λV(x)|μ|P-2
u=f(x,μ),x∈?N,
μ∈W1,p(?N),
where λ>0 is a parameter, V∈C(RN, R+)and V -1(0) has nonempty interior. Under some mild assumptions, the existence of nontrivial solutions of the equation is obtained by using the variational method. Moreover, the concentration of solutions is also explored.
[1] | 蓝永艺, 沈贤端. 一类p-Laplacian方程非平凡解的存在性[J]. 集美大学学报: 自然科学版, 2017, 22(6): 66-69. |
[2] | 张鹏. 一类次线性p-Laplacian椭圆方程的多重正解[J]. 高等数学研究, 2010, 13(1): 15-17. |
[3] | 陆文端. 微分方程中的变分方法[M]. 北京: 科学出版社, 2003. |
[4] | Zou, W.M. and Schechter, M. (2006) Critical Point Theory and Its Applications. Springer. |
[5] | Rabinowitz, P.H. (1986) Minimax Methods in Critical Point Theory with Applications to
Differential Equations. American Mathematical Society. |
[6] | Lions, P.L. (1984) The Concentration-Compactness Principle in the Calculus of Variations. the
Locally Compact Case, Part 1. Annales de l’Institut Henri Poincare C, Analyse Non Lineaire,
1, 109-145. https://doi.org/10.1016/s0294-1449(16)30428-0 |