全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加权Laplace在Bakry-émery Ricci曲率条件下的Li-Yau梯度估计——关于Li-Yau梯度估计的研究
Li-Yau Gradient Estimation of Weighted Laplace under Bakry-émery Ricci Curvature—Research on Li-Yau Gradient Estimation

DOI: 10.12677/pm.2025.155177, PP. 280-286

Keywords: Li-Yau梯度估计,Bakry-émery Ricci曲率,Bochner公式,极大值定理
Li-Yau Gradient Estimation
, Bakry-émery Ricci Curvature, Bochner Formula, Maximum Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了在Bakry-émery Ricci曲率条件下加权Laplace算子的Li-Yau梯度估计的问题,利用Bochner公式与加权Laplace公式以及极大值定理等处理Li-Yau梯度问题的方法,获得了加权Laplace在Bakry-émery Ricci曲率有下界的条件下,热方程的正解u (x, t)的最优Li-Yau梯度估计。
In this paper, the problem of Li-Yau gradient estimation of weighted Laplace operator under Bakry-émery Ricci curvature is studied. Bochner formula, weighted Laplace formula and the maximum theorem are used to deal with the Li-Yau gradient problem. The optimal Li-Yau gradient estimation for the positive solution u (x, t) of the heat equation is obtained under the condition of lower bound for weighted Laplace Bakry-émery Ricci curvature.

References

[1]  Li, P. and Yau, S.T. (1986) On the Parabolic Kernel of the Schrödinger Operator. Acta Mathematica, 156, 153-201.
https://doi.org/10.1007/bf02399203
[2]  Davies, E.B. (1989) Heat Kernels and Spectral Theory. Cambridge Tracts in Math., Vol. 92, Cambridge University. Press.
[3]  Hamilton, R.S. (1993) Matrix Harnack Estimate for the Heat Equation. Communications in Analysis and Geometry, 1, 113-126.
https://doi.org/10.4310/cag.1993.v1.n1.a6
[4]  Bakry, D. and Qian, Z. (2005) Volume Comparison Theorems without Jacobi Fields. Conference on Potential Theory, Bucharest, 115-122.
[5]  Li, J. and Xu, X. (2011) Differential Harnack Inequalities on Riemannian Manifolds I: Linear Heat Equation. Advances in Mathematics, 226, 4456-4491.
https://doi.org/10.1016/j.aim.2010.12.009
[6]  Qi, S. and Zhang, Q.S. (2021) A Sharp Li-Yau Gradient Bound on Compact Manifolds.
[7]  Song, X., Wu, L. and Zhu, M. (2024) A Direct Approach to Sharp Li-Yau Estimates on Closed Manifolds with Negative Ricci Lower Bound. Proceedings of the American Mathematical Society, 153, 291-305.
https://doi.org/10.1090/proc/16950
[8]  Wu, J. (2024) An Improvement of the Sharp Li-Yau Bound on Closed Manifolds. Archiv der Mathematik, 123, 309-318.
https://doi.org/10.1007/s00013-024-02027-4
[9]  Song, X.Y. and Wu, L. (2023) Li-Yau Gradient Estimates on Closed Manifolds under Bakry-Mery Ricci Curvature Conditions. Journal of the Korean Mathematical Society, 60, 19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133