全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

极小3-连通平面图的构造
The Structure of Minimally 3-Connected Planer Graphs

DOI: 10.12677/pm.2025.155176, PP. 272-279

Keywords: 极小3-连通平面图,结构
Minimally 3-Connected Planar Graph
, Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

G 是由满足以下条件的3-连通平面二部图所组成的图类: G 的一部是3度点的集合,另外一部是度至少为4的点的集合。本文证明了若G是极小3-连通平面图且G中不存在边e使得G/eG/e\f是极小3-连通平面图,则 GG ,这里fe相邻于一个3度点。
Let G be a set of minimally 3-connected planer graphs such that every member of G is a bipartite graph with one parts of vertices of degree three and the other parts of degree at least four. Let G be a minimally 3-connected planar graph. This paper show that if G has no edge e such that either G/e or G/e\f is minimally 3-connected planar graph then GG ; here e and f are two edges incident to a vertex of degree 3.

References

[1]  Mader, W. (1972) Ecken Vom Gradn in Minimalenn-Fach Zusammenhangenden Graphen. Archiv der Mathematik, 23, 219-224.
https://doi.org/10.1007/bf01304873
[2]  Ota, K. and Saito, A. (1988) Non-Separating Induced Cycles in 3-Connected Graphs. Scientia Series A, 2, 101-105.
[3]  Dean, N., Hemminger, R.L. and Ota, K. (1989) Longest Cycles in 3‐Connected Graphs Contain Three Contractible Edges. Journal of Graph Theory, 13, 17-21.
https://doi.org/10.1002/jgt.3190130105
[4]  Dawes, R.W. (1986) Minimally 3-Connected Graphs. Journal of Combinatorial Theory, Series B, 40, 159-168.
https://doi.org/10.1016/0095-8956(86)90074-2
[5]  Coullard, C.R. and Oxley, J.G. (1992) Extensions of Tutte’s Wheels-And-Whirls Theorem. Journal of Combinatorial Theory, Series B, 56, 130-140.
https://doi.org/10.1016/0095-8956(92)90012-m
[6]  Kingan, S.R. (2023) Deletable Edges in 3-Connected Graphs and Their Applications. arXiv:1 802.02660.
[7]  Dirac, G.A. (1963) Some Results Concerning the Structure of Graphs. Canadian Mathematical Bulletin, 6, 183-210.
https://doi.org/10.4153/cmb-1963-019-5
[8]  Mader, W. (1988) Generalizations of Critical Connectivity of Graphs. Annals of Discrete Mathematics, 38, 267-283.
https://doi.org/10.1016/s0167-5060(08)70793-3
[9]  Halin, R. (1969) Zur Theorie Dern-Fach Zusammenhängenden Graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 33, 133-164.
https://doi.org/10.1007/bf02992931
[10]  Qin, C., Geng, J., Yang, H. and Xie, X. (2025) Contractible Edges in Spanning Trees of 3-Connected Graphs. Graphs and Combinatorics, 41, Article No. 22.
https://doi.org/10.1007/s00373-025-02890-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133